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Abstract
Chronic kidney disease (CKD) is a prevalent and serious global health issue, with a significant impact on individuals globally. 
Hence, it is imperative to promptly obtain an accurate diagnosis and interpretation for the commencement of appropriate 
treatment as timely detection and intervention can enhance the probability of long-term survival. Existing projection-based 
methods for feature selection do not yield desired outcomes due to their different objectives necessitating the need for inno-
vation approaches for a higher predictive performance. This study proposes a novel fusion-based feature selection (FFS) 
model for the optimization and selection of distinct features to enhance CKD diagnosis. This study utilizes the University 
of California, Irvine (UCI) CKD dataset and addresses missing data and imbalance issues through Multiple Imputations by 
Chain Equation (MICE) and Borderline Synthetic Minority Oversampling Technique (Borderline-SMOTE). The proposed 
model integrates different machine learning (ML) classifiers, conventionally known as black boxes, with SHAP values to 
provide interpretability and gain transparency in the decision-making process. The proposed FFS model performs better 
than single feature selection approaches, achieving 100% in all of the evaluation metrics for support vector machine, light 
gradient boosting, random forest, voting and extreme gradient boosting classifiers compared to other existing literature that 
also utilized the same dataset. Notably, the SHAP analysis reveals that features such as red blood cell, white blood cell count 
and the pus cell clumps show model specific interactions. This aids healthcare in understanding and effectively applying the 
model’s outputs. Empirical evidence demonstrates that our proposed approach exhibits superior performance which has the 
potential to complement physicians’ diagnosis of kidney diseases. Also, the incorporation of explainability enhances the 
clarity of outcomes and facilitates the identification of the underlying cause of the diseases, contributing to more transpar-
ency and ethically sound AI applications in healthcare.
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1 Introduction

Currently, chronic kidney disorders (CKD) are a prominent 
factor contributing to mortality on a global scale. Chronic 
kidney disease (CKD) is a degenerative ailment marked by 
the steady decline in kidney function, potentially leading 
to kidney failure [1]. Despite notable advancements in the 
management of CKD, its high cost and rising prevalence 
have detrimental effects on human life expectancy. Often-
times, a significant number of individuals are unable to 
detect Chronic Kidney Disease (CKD) during its initial 
phase due to the absence of any noticeable symptoms [2]. 
Consequently, the identification of CKD is feasible solely 
at the later stages of the illness when certain symptoms 
manifest. Nevertheless, it can promptly detect the pres-
ence of CKD in an individual by means of blood and urine 
analysis [3]. These two tests measure the concentrations of 
creatinine in the blood and protein in the urine. The blood 
and urine test results reveal the extent of renal disease. 
When renal function is impaired, the body retains excess 
fluid and waste, which can potentially result in a range of 
health complications, including cardiovascular disease and 
stroke. In addition, conditions such as hypertension, diabe-
tes, hypercholesterolemia, and glomerulonephritis might 
increase the risk of chronic kidney disease (CKD) [4].

Additionally, early detection of many life-threatening 
disorders allows for effective management. Machine learn-
ing methods are extensively employed in the healthcare 
industry, namely for the identification and categorization 
of specific diseases using distinctive dataset [5–10]. These 
systems will assist clinicians in making precise determi-
nations on patients. The input raw feature space often 
contains a substantial quantity of useless feature informa-
tion and tends to have a high dimensionality when data is 
obtained using feature generation techniques in traditional 
machine learning systems [6]. Projection-based statistical 
techniques, such as factor analysis (FA), principal com-
ponent analysis (PCA), and linear discriminant analysis 
(LDA), are effective in reducing dimensionality. PCA 
decreases the number of dimensions in the dataset while 
retaining important feature information. Factor analysis is 
a statistical technique that expands on principal component 
analysis (PCA) by explaining the covariance relationships 
between variables in regard to underlying components 
[7]. LDA utilizes the class label to calculate the matrix 
between and within the class, aiming to identify the direc-
tions that provide the most effective separation between 
the classes. Nevertheless, the unresolved matter remains 
about the optimal number of components to be maintained 
in fusion-based feature extraction. Most authors in pre-
vious CKD data studies utilize a single-feature extrac-
tion method [9, 10]. The PCA, FA, and LDA algorithms 

employ distinct strategies to convert the original features 
into a fusion-based feature.

Furthermore, medical data often exposes a disparity issue 
among different classes. The dimension reduction strategy 
based on projection, as well as the machine learning algo-
rithm, exhibit poor performance when the dataset is imbal-
anced and often experience overfitting [11]. Our analysis 
of the CKD data indicates the presence of missing values, 
outliers, and a significant imbalance between the higher-
class and lower-class instances, with the positive class being 
more than twice the size of the negative class. Therefore, 
there is need to resolve the missing values and imbalance 
dataset by inculcate the MICE imputation technique and the 
Borderline-SMOTE respectively in this research. In order 
to enhance the accuracy of CKD patient prediction using 
a computer-assisted diagnosis procedure, the main objec-
tive of this research is to ascertain the presence or not of 
CKD by analyzing different characteristics derived from the 
clinical examinations and also considering all the specified 
strategies for data preprocessing. More so, both single and 
ensemble machine learning models which include quadratic 
discriminant analysis (QDA), knearest neighbor (KNN), 
support vector machine(SVM), decision tree (DT), stacking 
(sc), random forest (RF), voting, xtreme gradient boosting 
(XGBoost), bagging, adaptive boosting, light gradient boost-
ing (LightGBM), gradient boosting decision tree (GBDT) 
are applied to the dataset.

Accurate diagnosis of these disorders and optimal treat-
ment choice are two essential elements towards effectively 
battling the disease in the shortest possible period and with 
little financial burden. Modern machine learning models 
have the ability to accurately diagnose diseases at a reason-
ably affordable price [12]. Nevertheless, machine learning 
models exhibit high levels of accuracy and mostly serve a 
supportive function in the process of medical decision-mak-
ing. This is a result of the absence of trust and subsequent 
absence of social approval for the models, as they exhibit 
a black box behavior by concealing the intricacies of their 
decision-making process. Queries on the decision-making 
process and the individual impact of each characteristic on 
the final result are deemed crucial for instilling confidence 
in the system’s results. Trust is essential between healthcare 
practitioners and information systems when making judg-
ments. If a healthcare practitioner lacks comprehension of 
the determinations produced by machine learning models, 
they are unable to articulate their therapy to patients [13]. 
The absence of clear elucidation that certain algorithms 
experience, coupled with the fact that treatment alternatives 
generally yield lower success rates in routine clinical prac-
tice compared to initial evaluation, contribute to the height-
ened regulatory intricacy [14]. Health practitioners must 
consider the etiology and consequences of medical condi-
tions, as well as the methodologies and frameworks that aid 
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them in making informed judgments [15, 16]. Interpretabil-
ity Machine Learning (XML) is a method used to elucidate 
the opaque functioning of artificial intelligence models. By 
incorporating the restrictions of explainability through the 
use of Interpretable Machine Learning (IML) techniques, 
the comprehensibility of the decision-making process in ML 
models is enhanced.

Based on the fact that ML in kidney functions as a black 
box is considered a significant drawback. This is because it 
is unable to provide tailored assessments by trained neph-
rologist, which might help clarify clinical information [17]. 
Certain approaches of interpretation are peculiar to particu-
lar models. They can only elucidate the model for which 
they are specifically developed. Another alternative is the 
Model agnostic interpretation approach which is applica-
ble for interpreting any machine learning model, regardless 
of the model’s level of complexity. Typically, the model 
agnostic approaches evaluate data by examining pairs of 
input and output features and can be applicable to nearly all 
models. The SHAP [16] technique is widely regarded as the 
most commonly employed model-agnostic approach. This 
approach utilizes cooperative game theory to determine the 
individual influence of each player (attribute) on the game’s 
output, which can be measured with respect to accuracy, pre-
cision, recall, and F1-Measure. The SHAP values are effec-
tive for interpreting the model, both on a global and local 
scale. Through global interpretation, the model determines 
the significance of each predictor (feature) in making predic-
tions. The resulting figure will illustrate both the beneficial 
and detrimental effects of each input. In addition to enhanc-
ing transparency, SHAP values can also offer local inter-
pretation. This method involves analyzing the given data 
by calculating the SHAP values for each feature of every 
observation, which provides a localized interpretation of the 
model. The SHAP approach is a post-hoc technique that is 
utilized subsequent to model training, thus help build a trust-
able and comprehensive system for a better prediction and 
interpretation of the diagnose of CKD. The performance of 
the proposed strategy will be assessed using the CKD on 
the UCI machine learning dataset and numerous evaluation 
metrics are employed to evaluate the performance of each 
classifier and its interpretability.

The paper introduces the following novel contributions 
to the diagnosis of CKD:

• A novel fusion-based feature selection is proposed, opti-
mizing the feature selection and enhancing predictive 
performance compared to existing methods.

• We analyzed comprehensive and optimized hyperparam-
eter tweaking and evaluation of twelve machine learning 
classifiers, both single and ensemble, to ascertain the 
effectiveness of the proposed strategy.

• We employed the MICE technique to address the missing 
values and Borderline-SMOTE technique to manage data 
imbalance, improving data quality for CKD diagnosis.

• Interpretable Machine Learning technique including 
SHAP values, are integrated to improve the transparency, 
clarity, confidence and trustworthiness of the model’s 
decision-making process.

The organization of this paper is followed sequentially: 
Sect. 2 provides a comprehensive literature review. Section 3 
provides rich explanation of the data preprocessing, fusion-
based feature selection, machine learning models and the 
Interpretability approach. Section 4 presents the experimen-
tal setup and the evaluation metrics whereas Sect. 5 eluci-
dates the analyses and discussion of the experimental results 
and comparison with other research works. Section 6 serves 
as the final section which encompasses the conclusion and 
potential future work.

2  Related works

The rise in the number of patients with chronic kidney dis-
ease (CKD) is apparent, and the diagnostic expenses associ-
ated with this condition are considerably higher compared 
to those of other illnesses. In addition, numerous developing 
nations suffer from a scarcity of specialized nephrologists. 
This section will cover different literature review in three-
fold which include feature selection methods, machine learn-
ing models and Interpretability Machine Learning (IML) for 
the diagnose of CKD.

2.1  Feature selection methods for CKD diagnosis

Feature selection involves the removal of irrelevant attrib-
utes and the selection of useful features from a dataset, 
potentially enhancing the performance and prediction speed 
of the model. Senan et al. [18] utilized the recursive Feature 
elimination technique (RFE) with different ML model for 
an effective diagnosis of CKD achieving all round 100% for 
accuracy, precision, Recall and F1-score. The same feature 
selection was also considered with an univariate selection by 
Ogunleye et al. [19] with different ML model. XGBOOST 
with RFE achieved all round 100% for accuracy, precision, 
sensitivity, specificity. Moving over to another feature selec-
tion, Chittora et al. [20] utilized three methods which are 
filter, wrapper and embedded approaches with different ML 
models and achieved 98.86% accuracy. Drall et al. [21] uti-
lized a correlation and dependence method with just two 
models, Naïve Bayes and KNN achieved an accuracy of 
100%. Elheoseny et al. [22] utilized the density based feature 
election (DFS) with ant colony based optimization (ACO) 
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algorithm and achieved an accuracy, sensitivity, specificity 
and F1-score of 95%, 96%, 93.3% and 96% respectively.

Additionally, Metaheuristic algorithms are commonly 
employed in feature selection approaches to achieve an opti-
mal set of features [23]. Several widely recognized optimiza-
tion algorithms include the ACO, Genetic Algorithm (GA), 
Whale Optimization Algorithm (WOA), Particle Swarm 
Optimization algorithm (PSO), and others [24, 25]. These 
methods can be employed in machine learning to identify the 
most optimal set of features or to determine the most opti-
mal set of parameters for any machine learning model. Sakri 
et al. [26] employed PSO-based feature selection to enhance 
the accuracy of breast cancer recurrence prediction. Khehra 
et al. [27] conducted a study comparing GA, PSO, and BBO 
in their ability to find an optimal feature set from microc-
alcifications clusters (MCC). The results indicate that BBO 
outperforms the other two methods, albeit by a little margin. 
Manonmani et al. [28] applied the ITLBO approach to a 
CKD dataset and identified the optimal subset of features. 
Out of the 24 features, 16 were selected as the best subset.

Furthermore, projection-based features techniques like 
FA, PCA and LDA are effective in reducing dimensional-
ity. PCA decreases the number of dimensions in the dataset 
while retaining important feature information. Factor analy-
sis is a statistical technique that expands on principal compo-
nent analysis (PCA) by explaining the covariance relation-
ships between variables in regard to underlying components 
[7]. LDA utilizes the class label to calculate the matrix 
that represents the differences and similarities within and 
between the classes. It aims to identify the directions that 
provide the most effective separation between the classes 
and achieving a better prediction performance. Neverthe-
less, the unresolved matter remains regarding the optimal 
number of components to keep in projection-based feature 
extraction. These techniques PCA, FA, and LDA algorithms 
employ distinct strategies to convert the original attributes 
and this research endeavor to create a unified feature space 
that combines PCA, FA, and LDA projection.

2.2  Machine learning model for CKD diagnosis

Computer-assisted diagnostic systems are crucial, and 
prior studies have highlighted the application of machine 
learning (ML) techniques to aid expert clinicians in medi-
cal health sectors for generating diagnostic judgments 
[29]. Nevertheless, the identification and assessment 
of CKD by the utilization of artificial intelligence has 
gained prominence in recent times. Consequently, several 
research publications have employed ML techniques as 
effective automated methods that rely on characteristics 
to identify and diagnose chronic kidney disease (CKD) in 
its first phases [30]. Gabriel et al. [31] developed a model 
based on a twin system of Neural Network and Case-Based 

Reasoning (NN-CBR) to accurately assess the likelihood 
of an individual developing Chronic Kidney Disease 
(CKD). This study revealed that approximately 7% of 
the population in Colombia is susceptible to developing 
Chronic Kidney Disease (CKD). Additionally, the RF and 
SVM model were utilized to compare the results of the 
NN-CBR system. The NN-CBR system achieved a test 
dataset accuracy of 95%.

Khan et  al. [32] employed seven machine learning 
approaches in order to categorize CKD as either CKD or 
NOT-CKD in all of the conducted tests. The model per-
formance was assessed using various assessment measures, 
including mean absolute error (MAE), root mean squared 
error (RMSE), relative absolute error (RAE), root relative 
squared error (RRSE), recall, precision, F-measure, and 
accuracy. Overall, the findings indicate that CHIRP sig-
nificantly decreases error categorization rates and enhances 
accuracy. The CHIRP demonstrated a precision of 99.75% 
with a Mean Absolute Error (MAE) of 0.0025. Alasker 
et al. [33] employed various intelligent techniques, includ-
ing backpropagation neural network, Naïve Bayes, decision 
trees, k-nearest neighbor, and one rule classifier, to identify 
renal sickness. They utilized a dataset from the UCI ML 
repository, which consisted of 24 attributes and 400 indi-
viduals. The Naive Bayes approach surpasses other classifi-
cation algorithms in terms of accuracy and sensitivity. The 
Naive Bayes (NB) algorithm achieved a remarkable accu-
racy of 99.36% and an impressively low error rate of 0.0057 
by utilizing all 24 attributes in combination.

Padmanaban et al. [34] suggested that machine learn-
ing classifier techniques have the potential to detect CKD 
at an initial stage in diabetic individuals. A total of 600 
diabetic patients were included in the study, and data were 
obtained from the diabetes research facility in Chennai, 
India. The CKD classification task utilized the Naïve Bayes 
and Decision tree algorithms, which are the most commonly 
employed machine learning methods. The performance indi-
cators were measured to evaluate their effectiveness. The 
experiments were conducted exclusively with the Weka tool. 
The results indicated that the decision tree method outper-
formed the Naïve Bayes algorithm, with an accuracy rate 
of 91%. Drall et al. [21] employed Naïve Bayes and KNN 
algorithms to identify CKD using the UCI machine learning 
repository dataset, which consisted of 400 instances and 25 
characteristics. They utilized statistical analysis techniques 
such as mean and mode to address the missing value in the 
dataset for their research. The correlation and dependence 
strategy was utilized to generate highly interdependent fea-
tures for the prediction of CKD. Ultimately, it was dem-
onstrated that the k-nearest neighbor algorithm performed 
better than the Naïve Bayes algorithm when considering the 
five features. Demographic and biochemical blood charac-
teristics can sometimes be more important than measuring 



International Journal of Machine Learning and Cybernetics 

urine protein levels when predicting chronic kidney disease 
(CKD) in the future.

Almansour et al. [35] utilized an artificial neural network 
(ANN) and support vector machine (SVM) to analyze the 
UCI machine learning repository dataset for the purpose of 
diagnosing chronic kidney disease (CKD). In their research, 
the researchers utilized the mean value of the respective 
attributes to replace any missing values in the dataset. Fur-
thermore, the significant parameters of each classifier were 
selected using the parameter tuning technique. The analysis 
determined that Artificial Neural Network (ANN) fared bet-
ter than Support Vector Machine (SVM), with accuracy rates 
of 99.75% and 97.75% respectively. Akben et al. [36] devel-
oped a prognostic model that integrates the results of urine 
tests, blood tests, and the patient's medical history to cat-
egorize CKD. In order to conduct the tests, the researchers 
utilized preprocessed data and subsequently employed it in 
the classification models. The data underwent preprocessing 
through the utilization of the K-Means clustering technique. 
The recommended methodologies yielded an accuracy of 
97.8%. Elhoseny et al. [22] have introduced a new frame-
work named D-ACO algorithm. This framework combines 
the density-based feature selection (DFS) with ant colony 
based optimization and attained a peak accuracy and F-score 
of 95% and 96%, respectively. Alsuhibany et al. [24] utilized 
the EDL-CDSS approach to assess the automated detection 
and categorization of CKD. This article encompassed sev-
eral procedures, including data collection, outlier detection, 
hyperparameter tuning, and deep learning-based categoriza-
tion. The maximum mean accuracy achieved was 96.71%. In 
this research, it is important to assess the robustness of the 
model performance on different single and ensemble models 
after our data processing and fused feature election using the 
same dataset for the prediction of CKD.

2.3  Interpretability machine learning

It is worth noting that most machine learning models are 
considered to be “black boxes”. A black-box model refers to 
a complex model that lacks easy interpretability for humans 
[38]. Doctors face difficulties in comprehending the under-
lying factors that led to a certain prediction made by the 
black box model when employing it as a diagnostic sys-
tem [14, 31]. The presence of the black box poses obstacles 
to medical decision support from the viewpoints of both 
physicians and patients [39]. Therefore, it is imperative to 
create a diagnostic system that offers the comprehensibility 
of the machine learning model. The interpretability of the 
machine learning (ML) model serves as a means to verify 
the accuracy of the projected outcomes and enhances the 
confidence of physicians in the system [40]. The increas-
ing interest in the field of eXplainable Artificial Intelligence 

(XAI) in recent years is driven by the need to enhance the 
interpretability of machine learning models [41].

Numerous studies investigated the field of Explainable 
Artificial Intelligence (XAI) and identified several tech-
niques for interpreting machine learning models, such as 
LIME, Decision Trees, Saliency Maps, and Shapley Expla-
nations [42]. Recently, the SHapley Additive exPlanation 
(SHAP) has been employed in many medical researches 
[43, 44] and other domain to determine the significance of 
features within a given set of features for a robust interpret-
ability. Tasmin et al. [45] employed xgboost and explain-
ability ML model for the diagnosis of lung cancer. Liao et al. 
[46] utilized an interpretable and predictive model for the 
diagnose of hypothyroidism. Zhang et al. [47] employed the 
Shapley Additive exPlanations (SHAP) method to develop a 
comprehensible model for Reinforcement Learning for Grid 
Control (RLGC). Dikshit et al. [48] employed SHAP to dem-
onstrate the importance of climatic conditions in influencing 
drought forecasting. Parsa et al. [49] utilized SHAP to assess 
the significance of traffic-related attributes in the model that 
contributes to an increased occurrence of traffic accidents. 
The relevant studies are listed in Table 1 to illustrate the 
performance and investigate the motivation based on the lit-
erature review. Also, based on these researches and conclu-
sions, we have created an automated and easily understand-
able ML fusion-based feature selection diagnostic method 
for Chronic Kidney Disease (CKD). This system identifies 
the most important factors that contribute to the diagnosis 
of a patient as either having CKD or not.

3  Materials and methods

This section will discuss the dataset collection, data pre-
processing steps, the feature selection strategies, the ML 
classifiers, and the SHAP values for the proposed approach.

3.1  Description of the dataset

This research conducts an analysis of Chronic Kidney Dis-
ease (CKD) utilizing both single and ensemble classifiers. 
The CKD dataset used in this analysis is publicly available 
and was obtained from the UCI machine learning reposi-
tory website [50]. Furthermore, a number of researchers 
conducted experiments to evaluate the effectiveness of their 
classification model by utilizing the UCI ML repository 
dataset, a well-known benchmark dataset, for the purpose 
of predicting CKD [32–35]. The dataset as seen in Table 2 
comprises 400 instances, with 250 classified as CKD and 
150 classified as NOTCKD, which is considered as data 
imbalance. The dataset has a total of twenty-five attrib-
utes, with eleven falling into the numeric category and the 
remaining attributes falling into the nominal category. One 
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attribute which is the target variable denotes the classifica-
tion of CKD, specifically CKD or Not CKD. Table 2 pro-
vides more details regarding the dataset. Every feature in the 
dataset, except for the class attribute, contains some missing 
values indicated by a question sign.

3.2  Preprocessing of data

The majority of data in the actual world requires preprocess-
ing to address issues such as inconsistency, missing values, 
noisy features, and outliers, else, improving the machine 
model's quality becomes challenging, leading to subpar out-
comes. In this subsection, variety of procedures has been 
executed to cleanse and enhance the data.

3.2.1  Imputation of missing values

The CKD dataset utilized in this work underwent a clean-
ing process whereby missing values were addressed through 
the process of filling them in. Prior research have utilized 
several techniques to handle missing values in datasets, 
such as deleting rows or columns and employing statisti-
cal and machine learning algorithms for imputation. These 
algorithms include mean, median, mode, logistic regression, 
K-nearest neighbors (KNN), and others [19, 51–53]. Regret-
tably, the majority of the studies employed statistical impu-
tation as a means of estimating the value of missing data in 
the dataset, primarily due to its straightforwardness. This 
approach involves calculating the mean, mode, and median 

Table 1  Summary of related works

References Feature selection type Split ratio Models Results (%)

[18] Recursive feature elimination (RFE) Train: 75%
Val & Test: 75%

SVM, Tree, RF, KNN Accuracy: 100%
Recall: 100%
F1-score: 100%
Precision: 100%

[19] RFE, Univariate selection (US) and 
extra classifier (ETC)

Tenfold cross validation (CV) KNN, SVM, Tree, LDA, XGBoost, 
LG

RFE with XGBoost:
Accuracy: 100%
Sensitivity: 100%
Specificity: 100%
Precision: 100%

[20] Wrapper, filter and embedded method Train and test: 50% each ANN, Chi-square, LG, Tree, Linear 
SVM

Linear SVM-
Accuracy: 100%

[21] Dependence and correlation method – Naive Bayes (NB) and Tree Tree –
Accuracy: 90%

[22] Density based feature selection – ACO algorithm Accuracy: 95%
F1-Score: 96%
Sensitivity: 96%
Specificity: 93.33%

[31] – – NN, SVM, RF NN –
Accuracy: 95%
Precision: 94%
F1-Score: 95%
Recall: 97%

[32] – Tenfold cross validation (CV) NBTree, SVM, LG, NB and Compos-
ite Hypercube on Iterated Random 
Projection (CHIRP)

CHIRP –
Accuracy: 99.75%
Precision: 99.8%
F1-Score: 99.8%
Recall: 99.8%

[33] – – NN, NB, Tree, KNN NB –
Accuracy: 99.36%
Specificity: 100%
Sensitivity: 97.7%

[34] – Tenfold cross validation (CV) NB and Tree Tree –
Accuracy: 91%

[35] – tenfold CV,
Train-Test: 90–10%

ANN, SVM ANN –
Accuracy: 99.75%

[36] – – KNN, SVM, NB Accuracy: 99.75%
[37] – k-fold CV Ensemble deep neural network 

(EDNN)
EDNN –
Accuracy: 96.71%
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for the observation with the missing value, and then substi-
tuting those values in the associated characteristics.

Nevertheless, statistical imputation methods have the 
potential to provide biased or unrealistic findings. Conse-
quently, this approach leads to a reduction in the diversity of 
the dataset and exhibits subpar performance. Furthermore, 
this dataset comprises 24 distinct characteristics, with cer-
tain ones being categorical in nature. Hence, there are two 
approaches that can be employed to fill in the missing value 
in this dataset. For categorical variables such as appetite, 
pedal edema, anemia, etc., the missing values can be substi-
tuted with either a constant value or the statistical measures 
(mean, median, or mode) of the corresponding columns. Ini-
tially, this article substituted categorical missing data with 
constant values referred to as missing as it can yield superior 
outcomes compared to statistical methods such as mode.

Consequently, a distinct category has been identified for 
each feature that contains a missing value. For example, 

hypertension can be classified into two categories: yes or no. 
However, when a basic imputer is employed with a constant, 
hypertension is divided into three categories: yes, no, and 
missing. Multiple Imputations by Chain Equation (MICE) 
is an advanced technique used to handle missing data sets. 
In this study, we have utilized the MICE method to fill in 
the missing values for each feature, with the exception of the 
categorical features. Figure 1 displays the flowchart illustrat-
ing the MICE imputation approach. The MICE technique 
involves designating one feature column with missing data 
as the output, while the remaining feature columns are 
assigned as inputs. Subsequently, the regression model is 
employed to forecast the output data, and this procedure is 
carried out in an iterative manner. During each iteration, 
any missing values in the dataset are replaced with other 
values from the dataset and the procedure continues until it 
convergences.

3.2.2  Rescaling of dataset

The entire dataset has undergone rescaling due to the pres-
ence of data stored on disparate scales. Ordinal and binary 
encoding techniques are used to transform category data 
into ordinal and binary values, respectively. Furthermore, 
we apply a process of standardization to the dataset to guar-
antee that every feature possesses an average of zero and 
a standard deviation of one. Furthermore, the kernel dis-
tribution estimation (KDE) is assessed by utilizing every 
individual sample value of each feature to describe the 
probability density function. The kernel distribution, simi-
lar to a histogram, constructs a function that represents the 

Table 2  CKD dataset description [51]

S/no Description (attribute) Scale No. of 
missing 
value

Numerical attribute
1 Age (age) Years 9
2 Blood pressure (bp) Mm/Hg 12
10 Blood glucose random (bgr) mgs/dl 44
11 Blood Urea (bu) mgs/dl 19
12 Serum Creatinine (sc) mgs/dl 17
13 Sodium (sod) mEq/L 87
14 Potassium (pot) mEq/L 88
15 Hemoglobin (hemo) Gms 52
16 Packed Cell Volume (pcv) P cv 70
17 White Blood Cell Count 

(wbcc)
Cells/cumm 105

18 Red Blood Cell Count (rbcc) Millions/cmm 130
Nominal attribute
3 Specific gravity (sg) 1.005 to 1.025 47
4 Albumin (al) 0 to 5 46
5 Sugar (su) 0 to 5 49
6 Red blood cells(rbc) Abnormal, Normal 152
7 Pus cell (pc) Abnormal, Normal 65
8 Pus cell clumps (pcc) Not present, Present 40
9 Bacteria (ba) Not present, Present 4
19 Hypertension (htn) No, Yes 2
20 Diabetes Mellitus (dm) No, Yes 2
21 Coronary Artery Disease 

(cad)
No, Yes 2

22 Appetite (appet) Poor, Good 1
23 Pedal Edema (pe) No, Yes 1
24 Anemia (ane) No, Yes 1
25 Class (class) CKD, Not CKD 0

Fig. 1  MICE imputation flowchart
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probability distribution of the sample data. This technique 
can effectively elucidate the range of values for each feature 
that are responsible for chronic kidney disease (CKD). While 
there is substantial overlap between CKD and NOTCKD 
samples, the visualization can effectively capture the most 
significant information present in the sample. The Kernel 
Density Estimation (KDE), as known as the Kernel Distribu-
tion Estimation is employed in data visualization to portray 
the fundamental distribution of the features as illustrated 
in Fig. 2.

3.2.3  Equilibrate dataset

An imbalance has been noted in the dataset regarding the 
number of classifications, specifically CKD or NOTCKD. 
Imbalanced classifications pose a challenge in predic-
tive modeling, leading to models that have low predictive 
accuracy. Two techniques, specifically oversampling and 
under-sampling, can be employed to address the issue of 
an imbalanced dataset. Several sophisticated over-sampling 

techniques have been suggested in previous research, with 
SMOTE being widely recognized as one of the most favored 
methods [54]. However, an alternative oversampling tech-
nique known as borderline-SMOTE [55] shown superior per-
formance compared to SMOTE. Hence, this paper employs 
the borderline-SMOTE technique in place of the SMOTE 
technique. This article used the borderline SMOTE, where 
a Support Vector Machine (SVM) is employed instead of 
K-Nearest Neighbors (KNN) to generate synthetic instances 
of the minority class near the boundary separating the two 
classes in order to address the issue of imbalanced class dis-
tribution in a dataset. This method involves oversampling the 
data points located at the borderline between the minority 
and majority classes. Given the potential for misclassifica-
tion in borderline circumstances, it is essential to establish 
the optimal decision boundary. Furthermore, SVM endeav-
ors to create novel examples in the vicinity of the major-
ity class, when the density of majority class instances is 
minimal. It has been noted that this technology has achieved 
better results than the SMOTE technique.

Fig. 2  Kernel density estimation of the individual feature in terms of the output class
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Fig. 2  (continued)
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3.3  Feature selection

Feature selection involves eliminating irrelevant character-
istics to reduce the computational burden on the machine 
and improve the performance of the machine model [7–9]. 
Hence, feature selection is advantageous in enhancing the 
classifier’s performance and minimizing the execution time. 
Consequently, this study utilizes a proposed fusion-based 
feature selection strategy using PCA, FA and LDA to extract 
essential features to predict kidney patients.

3.3.1  Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [7] is a crucial tech-
nique for reducing the dimensionality of a dataset. It effi-
ciently condenses a dataset with multiple dimensions into a 
smaller number of dimensions while retaining crucial infor-
mation. In order to establish the optimal number of principal 
components, a method is utilized to guarantee that these 
components account for 95% of the variance by producing 
18 top components as seen in Fig. 3, thereby encompassing 
the majority of the information included in the dataset.

Pseudo-code for the Principal Component Analysis (PCA)
Inputs:

– Dataset D with m samples and r features D = {d1,d2,…,dm
}

– Target number of principal components n to retain.

Output:

– Reduced dataset D′ with m samples and n principal com-
ponents.

– Explained variance for each principal component

Process:

1. Standardize the dataset D to have a mean of zero and 
unit variance for each feature.

2. Compute the covariance matrix ∑ of the standardized 
dataset.

where D is the mean vector of the original dataset D.
3. Calculate the eigenvalues �i and eigenvectors E of the 

covariance matrix ∑.
4. Sort the eigenvectors by decreasing eigenvalues and 

select the top n eigenvectors.
5. Form the feature vector F by stacking the n eigenvectors.
6. Transform the original dataset D into the new subspace 

using the feature vector F to obtain the reduced dataset 
D′:

7. Calculate the explained variance for each principal com-
ponent.

8. Return the reduced dataset D′ and the explained vari-
ance.

3.3.2  Factor analysis (FA)

Factor analysis [7] is a technique used to reduce the num-
ber of features by uncovering underlying variables that are 
not directly observed but are inferred from the observed or 
manifest variables. This technique aims to extract the highest 
amount of common variation from the observed variables 
and combine it into a single score for further analysis. In 
general, extracting a large number of factors might result 
in undesirable consequences, while reducing the number of 
factors can decrease the amount of shared variance with-
out any negative impacts. Hence, the careful selection of an 
optimal number of components is pivotal in the process of 
analysis. Common techniques for identifying the optimal 
number of elements include the eigenvalue approach, scree 
plot, Kaiser's criterion, and Jolliffe's criterion. We combined 
the scree plot and the Kaiser’s criterion as an enhanced FA 
technique to provide a more nuanced and accurate method 
for determining the number of factors and top 16 compo-
nents were selected as seen in Fig. 4.

Pseudo-code for Factor Analysis (FA) with Scree Plot and 
Kaiser's Criterion

Inputs:

– Dataset D with m samples and r features D = {d1,d2
,…,dm}

– Initial number of factors f .

Output:

∑

=
1

m − 1
(D − D)T

(

D − D
)

.

D� = FT .D

Fig. 3  Top 18 Components of PCA Feature selection



International Journal of Machine Learning and Cybernetics 

– Reduced dataset D′.
– Number of significant factors n.

Process:

1. 1. Initial Factor Analysis:

– Apply FA on D with f initial factors.
– Compute eigenvalues for each factor: Eigenvalue 

= Noise Variance + Diagonal of Covariance (D)

2. Scree Plot Visualization:

– Plot eigenvalues against factor indices and identify 
'elbow point' to decide on significant factors.

– Scree Plot Formula: Plot (Factor Index, Eigenval-
ues)

3. Kaiser’s Criterion Application:

– For significant factor selection, determine n where 
eigenvalues are greater than the threshold (1)

  n = (Eigenvalues > 1)

4. Refined Factor Analysis:

– Reapply FA on D using n factors and obtain a 
reduced feature space D′.

5. Explained Variance Calculation:

– Calculate the proportion of variance explained by 
each factor.

6. Factor Loadings Analysis:

– Examine how original features contribute to each 
factor.

Explained Variance

=

Sum of squared loadings for each factor

Total Variance of D

– Factor Loadings = Components of FA model

3.3.3  Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a supervised method 
for reducing the dimensions of a dataset, primarily used for 
classifying datasets into two or more categories. The core 
objective of LDA is to compress an n-dimensional space into 
an m-dimensional one. Generally, the number of dimensions 
produced by LDA is fewer than the total number of classes 
in the dataset. In this technique, the newly projected data 
matrix is of a lower dimensionality, which aims to mini-
mize variance within each class while maximizing variance 
between different classes. Each class is characterized by a 
unique dimension that sets it apart. In this research, since 
we have got two classes, therefore our LDA will be Class-
1, which becomes 1 component for LDA as seen in Fig. 5.

Pseudo-Code for Linear Discriminant Analysis (LDA)
Inputs:

– Dataset D with m samples and r features D = {d1,d2,…,dm
}.

– Class labels L corresponding to each sample in D.

Output:

– Transformed dataset D′ in the reduced LDA space.

Process:

1. Calculate Class Means:

– Compute the mean vectors for each class in L:
  dk =

1

nk

∑

di∈classk
di, where nk is the number of sam-

ples in class k.

2. Between-Class Scatter Matrix SB:

Fig. 4  Top 16 Components of FA Feature selection
Fig. 5  Feature selection of LDA Component
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– Calculate the between-class scatter matrix:
  SB = 

∑k

k=1
nk(dk-d ) ( dk - d)

T , where d is the overall 
mean of the dataset, and K is the number of classes.

3. Within-Class Scatter Matrix Sw:

– Calculate the within-class scatter matrix:
  Sw = 

∑k

k=1
 
∑

di∈class k
(di − dk ) ( di − dk)

T

4. Compute the LDA Criteria:

– Solve the eigenvalue problem for the matrix S−1
W
SB to 

obtain the eigenvectors.
– These eigenvectors define the LDA components.

5. Select Top Components:

– Choose eigenvectors with the highest eigenvalues to 
form a transformation matrix W .

6. Transform Dataset:

– Project D onto the new LDA space using W:

7. Output Transformed Dataset:

– The transformed dataset D′ is now in a space where 
classes are linearly separable.

3.4  Proposed fusion‑based feature selection 
method

When analyzing the Chronic Kidney Disease (CKD) data-
set, a novel approach called Fusion-based Feature Selection 
involves combining features derived from Principal Compo-
nent Analysis (PCA), Factor Analysis (FA), and Linear Dis-
criminant Analysis (LDA) in a concatenated manner. This 
approach utilizes the synergistic advantages of these three 
separate feature selection processes, resulting in a resilient 
and multifaceted feature set. The concatenated approach 
commences by separately implementing Principal Com-
ponent Analysis (PCA), Factor Analysis (FA), and Linear 
Discriminant Analysis (LDA) on the standardized Chronic 
Kidney Disease (CKD) dataset. Every technique retrieves a 
distinct set of characteristics: Principal Component Analy-
sis (PCA) is a method that identifies the main components 
that explain the most variation in the data. Factor Analysis 
(FA) reveals underlying factors that explain shared vari-
ances. Linear Discriminant Analysis (LDA) identifies dis-
criminants that provide the best separation between differ-
ent classes, which is particularly helpful in discriminating 
between occurrences of Chronic Kidney Disease (CKD) and 
instances of non-CKD. The essence of this approach is based 

D� = D ×W

on horizontally combining the output features obtained from 
PCA, FA, and LDA, thereby a total of top 35 feature compo-
nents for the different feature selection analyzed as seen in 
Fig. 6. Each observation in the dataset is combined to create 
a feature vector that includes PCA components, FA factors, 
and LDA discriminants.

A concatenated feature set combines the variance, latent 
structures, and class-specific properties of the data, while 
also including unique perspectives from each approach, so 
enriching the dataset. The use of this comprehensive set of 
features offers numerous benefits, especially in intricate 
datasets such as CKD where multidimensional insights are 
essential. It enhances the ability to comprehend the data in a 
more detailed and sophisticated manner, hence strengthening 
the possibility for accurate categorization and forecasting. 
The wide range of characteristics, which can be focused on 
either variance or class separability, provides researchers 
and data scientists with a robust set of tools to discover 
concealed patterns, create well-informed forecasts, and find 
crucial elements that contribute to CKD. This strategy is a 
comprehensive and purposeful combination of feature selec-
tion strategies, setting a standard for advanced data analysis 
in medical research. In addition, in order to prevent bias and 
overfitting in our experimental results, we employ a random 
oversampling technique.

Pseudo-Code for the Propose Fusion-based Feature Selection
Inputs:

– Dataset D with m samples and r features.
– Class labels L for LDA.
– Number of components nPCA for PCA, nFA for FA, and 

nLDA for LDA.

Output:

Fig. 6  Top 35 components of proposed fusion-based feature selection 
(FFS)
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– Concatenated feature set from PCA, FA, and LDA.

Process:

1. Preprocessing:

– Standardize the dataset D.

2. PCA Component Extraction:

– Apply PCA on D to extract nPCA principal compo-
nents.

– Let DPCA be the PCA component matrix.

3. FA Component Extraction:

– Perform FA on D to extract nFA factors.
– Let DFA be the FA component matrix.

4. LDA Component Extraction:

– Apply LDA on D using class labels L to extract 
nLDA discriminants.

– Let DLDA be the LDA component matrix.

5. Concatenation of Components:

– Concatenate DPCA , DFA and DLDA horizontally.
– Let D be the resulting concatenated feature set.

6. Output:

– Return D as the integrated feature set from PCA, 
FA, and LDA.

3.5  Models for categorization

A classifier or classification model is essential for accu-
rately predicting different diseases based on the patient's 
medical history. The classifier undergoes training using 
a set of training data, and subsequently, it is evaluated by 
classifying the corresponding target variables. This article 
utilized different single and ensemble classification algo-
rithms to differentiate between the patient’s condition of 
Chronic Kidney Disease (CKD) and non-CKD.

3.5.1  Single models

i. Support Vector Machine (SVM)
The Support Vector Machine (SVM) [56] is an effective 

classifier that identifies the ideal hyperplane to accurately 
split data into different classes. The support vector machine 

(SVM) is highly efficient in high-dimensional spaces and 
exhibits versatility by employing several kernel functions, 
such as linear, polynomial, and radial basis function (RBF). 
SVM, or Support Vector Machine, is a predictive model 
that can accurately represent intricate connections between 
symptoms and disease outcomes. It achieves this by optimiz-
ing the distance between the data points that are closest to 
the decision border, known as support vectors. The process 
of maximizing the margin in SVM enhances its robustness, 
reducing the likelihood of overfitting, particularly in situa-
tions when the number of features is significantly more than 
the number of observations.

ii. K-Nearest Neighbors (KNN)
The K-Nearest Neighbors (KNN) [57] algorithm is a type 

of instance-based learning. It predicts the outcome for a new 
instance by considering the majority vote of its ‘k’ near-
est points in the feature space. The non-parametric method 
is frequently selected because to its simplicity and efficacy 
in classifying tasks that involves a non-linear relationship 
between the feature space and the output. In the case of 
Chronic Kidney Disease (CKD), the K-Nearest Neighbors 
(KNN) algorithm can be employed to detect patterns by 
comparing the similarity of symptoms among patients. The 
proximity of cases is utilized as an indicator of the prob-
ability of the disease being present.

iii. Decision Tree (Tree)
Trees are a non-linear predictive modeling technique 

that divides the data into subsets based on the input fea-
ture values by recursive partitioning. Every node in the tree 
represents a characteristic in the dataset, and each branch 
represents a decision rule that leads to a leaf node, which 
corresponds to a predicted result. Decision Trees provide 
an inherent intuitiveness and their decisions are readily 
interpretable, rendering them highly effective for providing 
clinical decision support in the prediction of Chronic Kidney 
Disease (CKD). These models have the ability to process 
both numerical and categorical data and can effectively cap-
ture intricate relationships between symptoms.

iv. Quadratic Discriminant Analysis (QDA)
QDA is a statistical technique employed to classify data-

sets including two or more classes. This method assumes 
that the data from each class is sampled from a Gaussian 
distribution. It uses quadratic decision surfaces to distin-
guish between the classes. This approach is especially ben-
eficial when there is a non-linear relationship between the 
independent factors and the dependent variable. QDA can 
be advantageous in predicting CKD when the classes have 
noticeable differences in their variance–covariance struc-
tures. This allows the model to adapt to the unique charac-
teristics of the data’s distribution.
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3.5.2  Ensemble models

i. Extreme gradient boosting (XGBoost)
XGBoost is a powerful computational ML model that is 

based on gradient boosting. It has the advantage of requiring 
less computing time compared to traditional gradient boost-
ing [58]. Furthermore, XGBoost incorporates regularization 
terms, resulting in superior performance compared to the 
gradient boosting method. Furthermore, XGBoost possesses 
the capability to automatically manage missing values and 
process larger datasets that exceed the memory capacity. In 
addition, it has the capability to do parallel operations by 
utilizing column sub-sampling techniques.

ii. Light gradient boosting (LightGBM)
LightGBM technique combines gradient-based one-side 

sampling (GOSS) with exclusive feature bundling (EFB) 
[58]. Gradient-based One-Side Sampling (GOSS) is utilized 
to conduct gradient-based subsampling of the training data. 
This technique effectively reduces overfitting and accelerates 
the training process. Significantly, the algorithm employs a 
leaf-wise growth technique to construct the decision trees, 
resulting in a reduction in the number of tree nodes and an 
enhancement in algorithm efficiency. Consequently, Light-
GBM exhibits a shorter execution time compared to other 
ensemble approaches.

iii. Voting
Majority voting is a prevalent and widely recognized 

technique among the eight ensemble methods. In a voting 
system, each model in the ensemble is trained autonomously 
on a subset of the training data or utilizing a distinct algo-
rithm or combination of hyperparameters. The prediction 
is thereafter exhibited by adjusting the classifier weights 
based on the majority of votes from the classifier [59]. This 
paper examines the utilization of the support vector machine 
(SVM) and k-nearest neighbor (KNN) classification algo-
rithms in a majority voting ensemble.

iv. Bagging (Bag)
Bagging is a machine learning technique used for 

ensemble learning, where the term “Bagging” is actually 
an abbreviation for “Bootstrap Aggregating”. Bagging 
involves training each model in the ensemble on a ran-
domly selected subset of the training data, with replace-
ment. The method utilizes bootstrap sampling to generate 
data subsets for training each base classifier separately. 
There is a possibility that certain data points from the 
original training set may be duplicated in each bootstrap 
sample. The class that receives the highest level of popu-
larity is determined once the algorithm has been trained 
using all bootstrap samples.

v. Adaptive boosting (Ada)
Adaptive boosting [58] is a method that combines multi-

ple weak classifiers to create a strong classifier. The strategy, 
introduced by Freund and Schapire, utilizes decision tree 
stumps as weak algorithms in a consecutive manner. Each 
subsequent algorithm corrects the inaccurately predicted 
output of the previous learners. The weight of each sam-
ple is allocated during every phase of the training period to 
execute this procedure. To enhance the performance of the 
learners that follow, Ada typically focuses on minimizing the 
misclassification error. The records are selected to optimize 
the weighting of training samples for the subsequent classi-
fier. It selects a learner that minimizes the error rate when 
classifying data during the training phase.

vi. Gradient boosting decision tree (GBDT)
GBDT is a method that combines multiple weak learners 

to generate powerful learners for classification and regres-
sion tasks. This method employs an iterative procedure to 
incrementally construct decision trees, aiming to minimize 
the errors of the previous trees. The ultimate goal is to create 
a powerful learner by combining these trees [60]. This tech-
nique employs an ensemble of many weak learners to gen-
erate robust learners for classification and regression tasks. 
This method uses an iterative procedure to sequentially con-
struct decision trees, with the aim of minimizing errors from 
previous trees. Ultimately, the trees are combined to create a 
powerful learner. When incorporating new models, it utilizes 
a gradient descent approach to minimize loss.

vii. Random Forest (RF)
The RF algorithm is an ensemble learning technique that 

builds many decision trees during training and outputs the 
most frequent class (classification) among the individual 
trees. Random Forest (RF) incorporates randomness into the 
model by employing bootstrapping to sample the data and 
selecting a subset of characteristics at each split while con-
structing the trees. The incorporation of randomization in the 
model aids in the generation of a collection of varied trees, 
hence, mitigating the likelihood of overfitting and enhancing 
the model’s resilience in predicting Chronic Kidney Disease 
(CKD). It excels at managing extensive datasets with several 
features, capturing intricate relationships between symptoms 
without requiring the reduction of features.

viii. Stacking
STACK refers to the act of arranging objects or items in 

a vertical or horizontal manner, one on top of another, in a 
neat and organized fashion. Stacking is an ensemble method 
that involves performing classification and regression opera-
tions in two stages [60]. During the initial stage, classifiers 
undergo training using the provided data and provide predic-
tions that serve as input for the subsequent classifier. In the 
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last phase, all projected results are treated as the input for the 
new classifier and assessed as the ultimate output.

3.5.3  SHAP interpretation model

The objective of this work is to extract the complexities 
of machine learning predictions and convert them into 
practical insights for Chronic Kidney Disease (CKD) 
by employing Explainable Artificial Intelligence (XAI). 
Our goal is to use machine learning methods to analyze 
the CKD dataset and understand the complex relation-
ship between symptoms and CKD. Our method utilizes 
machine learning algorithms, including the single model 
and ensemble models that have been carefully optimized 
to classify CKD data accurately. In order to assure the 
strength and avoid overfitting [60, 61], the models undergo 
thorough validation using unseen data. Performance indi-
cators such as accuracy, precision, f1-score and recall are 
carefully examined during this process.

After the validation is successfully completed, we pro-
ceed to utilize the SHapley Additive exPlanations (SHAP) 
approach in order to clarify and understand the decision-
making processes of the models. SHAP values provide a 
detailed perspective on the contributions of each charac-
teristic, illuminating the importance of each symptom in 
predicting CKD. The algorithms analyze the combined 
feature selection and train on a carefully selected dataset to 
predict chronic kidney disease outcomes. SHAP possesses 
significant interpretive capabilities, allowing us to ana-
lyze the models’ predictions and the influence of specific 
features. The overall proposed architecture is illustrated 
in Fig. 7 and with employing this strategy, the prediction 
accuracy is enhanced and the models become more trans-
parent, hence promoting trust and comprehension in the 
diagnostic predictions of CKD.

4  Experimental setup

This section will explain the experimental setup executed 
in this paper which includes the environment setup, dataset 
split, hyperparameter tweaking and evaluation metrics.

4.1  Environment setup

The proposed model was compiled used the python pro-
gramming language with machine learning libraries on 
Windows 11 operating system. The hardware system oper-
ates with 64 GB RAM and 8 GB GPU, 11th Generation 
Intel core i7-11800H at 2.30HHz.

4.2  Dataset split

For each experiment, the performance of the proposed 
model was assessed by utilizing the train-test split and 
the cross-validation method. In every experimental set-
ting, 80% of the entire data was utilized as train set and the 
remaining 20% for train set both during the train-split and 
cross-validation method. Cross-validation is a statistical 
technique employed to assess the proficiency of machine 
learning models. It is frequently employed to ensure that 
the model is resilient and operates effectively on data that 
it has not been trained on. We partitioned our dataset into 
five equitably sized subsets, utilizing four of them for 
training our model and reserving the remaining subset for 
validation purposes.

4.3  Hyper‑parameter tweaking

Configuring the hyperparameters of each algorithm based 
on the CKD dataset enables us to optimize the algorithms, 
making them more adaptable and impactful. Nevertheless, 
adjusting the hyperparameter for each model is always dis-
cretionary. In addition, the performance of the majority 
classifier is dependent on the hyperparameters. Optimal 
solutions and outcomes can be achieved by selecting effec-
tive parameters for various applications.

Utilizing all parameters in the model will result in 
increased complexity and might slow down computations. 
In order to obtain the optimum model, it is crucial to con-
duct a focused search for a limited set of hyperparameters 
for each method. This work utilized a randomized search 
cross-validation approach to adjust the crucial hyperpa-
rameters of each classifier, which is considered superior 
to the conventional grid search technique. Moreover, the 
prediction of chronic kidney disease (CKD) was seen 
using the optimal combination of hyperparameters for 
each classifier. Table 3 presents comprehensive informa-
tion regarding the primary hyperparameters of each clas-
sifier for binary classification of CKD.

4.4  Evaluation metrics for the model

Numerous evaluation metrics can assess the accuracy of 
a model's predictions. The performance evaluation met-
rics for the prediction of CKD include accuracy, precision, 
recall, F-measure, AUC-ROC, and confusion matrix. Below 
describes each performance evaluation metrics:

a. Accuracy.
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  Accuracy quantifies the proportion of properly pre-
dicted instances from a specific class, relative to the total 
number of samples. It is often calculated using Eq. (1).

b. Recall.
  Recall is determined by calculating the ratio of cor-

rectly identified positive cases (TP) to the total number 
of genuine positive cases (TP + FN). Equation (2) is 
employed to compute the recall.

c. Precision.
  Precision is the ratio of true positive cases (TP) to the 

sum of true positive and false positive cases (TP + FP). 
The calculation can be performed using Eq. (3).

d. F-measure.

(1)Accuracy =
TP + TN

TP + FP + TN + FN

(2)Recall =
TP

TP + FN

(3)Recall =
TP

TP + FP

  The F-measure is computed by combining precision 
and recall. The F1 score is a mathematical metric that 
represents the weighted average of precision and recall. 
The F-measure is denoted by Eq. (4).

e. Confusion matrix.
  Confusion matrix is a technique used to precisely 

evaluate the effectiveness of a classification model. It 
displays the relationship between the actual and pre-
dicted classes of the target variable.

f. Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC).

  The plot illustrating the relationship between the True 
Positive Rate (TPR) and False Positive Rate (FPR) is 
commonly referred to as the Receiver Operating Char-
acteristic (ROC) curve (FPR) which showcases the effi-
cacy of a categorization model. The region beneath the 
receiver operating characteristic (ROC) curve is some-
times referred to as the area under the curve (AUC). The 
AUC-ROC statistic quantifies the discriminatory power 
of a classification model by evaluating its performance 

(4)F1 − score = 2 ∗
Precision ∗ Recall

Precision + Recall

Fig. 7  Proposed fusion-based 
feature selection interpretability 
machine learning model (FFS-
IML)
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across different threshold values. A model with a higher 
AUC value indicates better performance.

5  Experimental results and analysis

This section will discuss the output result of each classi-
fier while considering the different feature section and even 
when there is no application of any feature selection. The 
performance of the data split method- the train-test split and 
the cross validation methods will be checkmated. Overall, 
the performance of each classifier for the prediction of CKD 
will be analyze with the various evaluation metrics as stated 
in Sect. 4.3.

5.1  Absence of feature selection

In this scenario, we conducted an experiment to assess 
each classifier for the prediction of CKD without any fea-
ture selection processes. Table 4 depicts the outcomes 
of each classification model utilizing all features of the 
provided dataset. The table clearly indicates that for the 
single models aspect, QDA algorithm achieved a greater 
percentage within three metrics which include, accuracy 
of 96.84%, recall of 95.92% and F1-score of 96.90% with a 
lesser computational time when compared to others. Addi-
tionally, both KNN and SVM achieved 100% in AUC-ROC 
whereas KNN achieved the highest performance value in 
Precision of 100%. Generally, it is important to note that 
the ensemble model, RF classifier exhibits the lowest per-
formance of 87.04% when compared to other classifiers 
even with the single model classifiers. Furthermore, for 
the fivefold cross-validation for the different classifiers 
exhibits a satisfactory performance when compared to the 

train-test split method. The voting classifier achieves the 
highest average accuracy over all folds with 98.95% accu-
racy, thus, suggesting a strong level of consistency in our 
model’s predictions for Chronic Kidney Disease (CKD). 
In addition, the standard deviation was low, measuring at 
1.29%, indicating that there was limited variance in accu-
racy among the different folds as seen in Table 4.

5.2  Factor analysis (FA) based feature selection

In this context, we conducted an experiment to evaluate 
each classifier's ability to predict CKD utilizing factor 
analysis feature selection. In the factor analysis, 16 latent 
factors were found with the utilization of both scree plot 
and Kaiser’s criterion. Comparing Tables 4 and 5, it is 
noticeable that the utilization of Factor analysis feature 
selection is quiet higher than without employing feature 
selection. Table 5 illustrates the results of each classifica-
tion model using all the features from the given dataset. 
The chart clearly demonstrates that the SVM algorithm 
outperformed other algorithms in terms of four evaluation 
metrics for both single and ensemble models with accu-
racy of 98.95%, recall of 100.00%, F1-score of 98.99% 
and AUC-ROC of 100.00% and also the cross-validation 
exhibits an average accuracy of 98.95% with standard 
deviation of 1.29% across all folds. More so, both stack 
and voting model exhibit the same values across all of the 
evaluation metrics.

5.3  Linear discriminant analysis (LDA) based 
feature selection

During the feature selection phase, we experimented 
on utilizing linear discriminant analysis (LDA) so as to 

Table 4  Classifiers’ performance without any feature selection

Feature selection Model type Classifiers Accuracy (%) Precision (%) Recall (%) F1-S (%) AUC (%) Time (sec) Cross-Val Acc 
(Mean ± std dev)

No feature selec-
tion

Single models KNN 94.74 100.00 89.80 94.62 100.00 0.141 92.11 ± 4.40
QDA 96.84 97.92 95.92 96.90 99.82 0.008 95.79 ± 2.11
SVM 95.78 97.87 93.88 95.83 100.00 0.070 98.95 ± 2.11
Tree 88.42 89.58 87.76 88.65 97.93 0.041 91.05 ± 5.42

Ensemble 
models

Ada 91.58 93.62 89.80 91.67 99.05 0.284 95.26 ± 4.53
Bag 90.53 88.46 93.88 91.09 99.71 4.382 95.79 ± 3.57
GBD 92.63 90.38 95.92 93.07 99.66 16.135 95.79 ± 3.57
LGB 91.58 88.68 95.92 92.16 99.80 0.197 95.79 ± 2.11
RF 90.53 87.04 95.92 91.26 99.70 2.691 96.84 ± 3.07
Stack 95.79 95.92 95.92 95.92 100.00 2.904 98.42 ± 2.11
Voting 96.84 100.00 93.88 96.84 100.00 5.431 98.95 ± 1.29
XGB 91.58 91.84 91.84 91.84 99.7 5.69 93.68 ± 3.57
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project feature space into a low-dimensional space and 
from our binary classification task, the resultant number 
of LDA is limited to a single component (1). With this 
application, most of the models achieved similar perfor-
mance values in the evaluation metrics as illustrated in 
Table 6. Additionally, both SVM and GDB achieved the 
same performance of average accuracy of 97.89% and 
standard deviation 0f 1.05% during the cross-validation 
stage among the different folds. Lastly, it is observed the 
performance of LDA is quite higher than just using FA or 
no feature selection.

5.4  Principal component analysis (PCA) based 
feature selection

We conducted another feature selection using the principal 
component analysis (PCA) and it can be seen in Table 7 that 

the evaluation metrics have greater performance as com-
pared to other two feature selection as previously mentioned. 
To gain an explained variance ratio of 95%, 18 components 
were used and this achieved a tremendous result in all of 
the evaluation metrics. An accuracy of 98.95% was exhib-
ited across both single and ensemble model, which include 
KNN, GBD, LGB and stack and also 100% was achieved by 
most models across the precision, recall and AUC metrics. 
More so, the cross validation achieved the highest accuracy 
of 98.95% with a standard deviation of 1.29 for the five-fold 
measure using the voting classifier.

5.5  Fusion‑based feature selection

For this experiment, we analyzed the proposed fusion-based 
feature selection that includes the concatenation of PCA, 
LDA and FA. The purpose of this fusion was to utilize the 

Table 5  Classifiers’ performance with FA based feature selection

Feature selection Model type Classifiers Accuracy (%) Precision (%) Recall (%) F1-S (%) AUC (%) Time (sec) Validation Acc 
(Mean ± std dev)

Factor analysis 
(FA)

Single models KNN 98.95 100.00 97.96 98.97 100.00 0.126 97.37 ± 1.66
QDA 96.84 96.00 97.96 96.97 98.3 0.011 94.74 ± 1.66
SVM 98.95 98.00 100.00 98.99 100.00 0.067 98.95 ± 1.29
Tree 93.68 97.78 89.79 93.62 98.9 0.031 93.68 ± 3.16

Ensemble 
models

Ada 93.68 97.78 89.79 93.62 100.00 0.074 93.68 ± 2.68
Bag 95.79 95.92 95.92 95.92 100.00 4.771 96.32 ± 2.68
GBD 95.79 95.92 95.92 95.92 100.00 18.783 96.84 ± 3.07
LGB 98.95 100.00 97.6 98.97 100.00 0.165 96.84 ± 3.07
RF 93.68 92.16 95.92 94.00 100.00 2.408 95.79 ± 2.68
Stack 98.95 100.00 97.96 98.97 100.00 2.690 98.42 ± 2.11
Voting 98.95 100.00 97.96 98.97 100.00 5.943 97.89 ± 1.97
XGB 97.89 97.96 97.96 97.96 99.7 5.390 96.32 ± 2.68

Table 6  Classifiers’ performance with LDA feature selection

Feature selection Model type Classifiers Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%) Time Validation Acc 
(Mean ± std dev)

Linear discrimi-
nant analysis 
(LDA)

Single models KNN 97.89 97.96 97.96 97.96 99.8 0.011 97.37 ± 1.66
QDA 97.89 97.96 97.96 97.96 99.8 0.009 97.37 ±00
SVM 97.89 97.96 97.96 97.96 99.8 0.034 97.89 ± 1.05
Tree 95.79 94.12 97.96 96.00 95.70 0.009 96.32 ± 2.68

Ensemble 
models

Ada 95.79 94.12 97.96 96.00 95.60 0.029 95.79 ± 2.11
Bag 96.84 96.00 97.96 96.97 99.6 3.005 95.79 ± 2.11
GBD 97.89 97.96 97.96 97.96 99.7 1.705 97.89 ± 1.05
LGB 97.89 97.96 97.96 97.96 99.8 0.168 97.37 ± 00
RF 97.89 97.96 97.59 97.96 99.6 1.410 96.84 ± 1.05
Stack 97.89 97.96 97.96 97.96 99.2 1.453 97.37 ± 1.66
Voting 97.89 97.96 97.96 97.96 99.8 3.52 97.37 ± 1.66
XGB 97.89 97.96 97.96 97.96 99.8 0.276 97.37 ± 1.66
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advantages of each method, creating a comprehensive fea-
ture space that effectively manages variation, hidden con-
nections, and the capacity to distinguish between different 
classes. PCA was used to maximize variance, FA was used 
to reveal underlying factors, and LDA was used to optimize 
class discrimination. These techniques combined to provide 
a strong and enhanced collection of features. The compari-
son analysis conducted on several classifiers yielded valu-
able insights as seen in Table 8.

The SVM classifier exhibited outstanding performance, 
attaining a perfect score of 100% in all criteria of the met-
rics, while also demonstrating remarkable computing econ-
omy. Similarly, ensemble models such as LGB, RF, Voting, 
and XGB demonstrated impeccable scores of 100% across 
all criteria. The results highlight the capability of ensemble 

models to utilize intricate, combined feature spaces to 
improve forecast accuracy.

On the other hand, individual models such as KNN and 
QDA showed impressive performance. KNN achieved 
flawless precision, while QDA stood out in terms of recall. 
The Decision Tree classifier demonstrated a balanced per-
formance rate, affirming its trustworthiness. The proposed 
feature selection overcomes the inherent constraints of indi-
vidual feature selection techniques. Although PCA primarily 
emphasizes variance, it may disregard class-specific charac-
teristics that are essential for classification purposes. Factor 
analysis, while skilled at uncovering underlying patterns, 
may overlook important features of variability necessary 
for accurately representing the data. LDA prioritizes maxi-
mizing the distinction between classes, although it may not 
fully capture the overall variability present in the data. By 

Table 7  Classifiers’ performance with PCA feature selection

Feature selection Model type Classifiers Accuracy (%) Precision (%) Recall (%) F1-S (%) AUC (%) Time (sec) Validation Acc 
(Mean ± std dev)

Principal com-
ponent analy-
sis (PCA)

Single models KNN 98.95 100.00 97.96 98.97 100.00 0.186 96.84 ± 1.97
QDA 94.74 94.00 95.92 94.95 96.6 0.012 97.37 ± 00
SVM 95.79 92.45 100.00 96.08 99.9 0.127 98.42 ± 1.29
Tree 95.79 97.87 93.88 95.83 95.9 0.032 97.37 ± 1.66

Ensemble 
models

Ada 95.79 97.87 93.88 95.83 95.9 0.059 98.42 ± 1.29
Bag 96.84 97.92 95.92 96.91 99.8 3.495 97.37 ± 1.66
GBD 98.95 98.00 100.00 98.99 99.8 8.964 97.37 ± 1.66
LGB 98.95 98.00 100.00 98.99 99.9 0.324 97.89 ± 1.97
RF 96.84 96.00 97.96 96.97 99.8 0.127 98.42 ± 1.29
Stack 98.95 100.00 97.96 98.97 100.00 3.251 97.89 ± 1.97
Voting 96.84 96.00 97.96 96.97 99.90 5.912 98.95 ± 1.29
XGB 95.79 97.87 93.88 95.83 99.9 0.582 97.37 ± 1.66

Table 8  Classifiers’ Performance with Proposed Fusion-based Feature Selection

Feature selection Model type Classifiers Accuracy (%) Precision (%) Recall (%) F1-S (%) AUC (%) Time (secs) Validation Acc 
(Mean ± std 
dev)

PCA + LDA + FA Single models KNN 97.89 100.00 95.92 97.92 100.00 0.146 96.84 ± 1.05
QDA 97.89 96.08 100.00 98.00 97.7 0.033 96.84 ± 1.05
SVM 100.00 100.00 100.00 100.00 100.00 0.162 97.89 ± 1.05
Tree 97.89 97.96 97.96 97.96 97.9 0.050 97.89 ± 1.05

Ensemble 
models

Ada 97.89 97.96 97.96 97.96 97.9 0.067 97.89 ± 1.97
Bag 98.95 100.00 97.96 98.97 100.00 3.858 99.47 ± 1.05
GBD 98.95 100.00 97.96 98.97 100.00 38.330 98.95 ± 1.29
LGB 100.00 100.00 100.00 100.00 100.00 0.159 99.47 ± 1.05
RF 100.00 100.00 100.00 100.00 100.00 2.681 98.95 ± 1.29
STACK 98.95 100.00 97.96 98.97 100.00 2.892 98.95 ± 1.29
Voting 100.00 100.00 100.00 100.00 100.00 5.912 98.42 ± 2.11
XGB 100.00 100.00 100.00 100.00 100.00 0.504 97.89 ± 1.05
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integrating these methods, we create a feature space that 
accurately captures the variability and fundamental organi-
zation of the data, while simultaneously being optimized for 
the classification objective and dependable medical diag-
nostics; nevertheless, there is also need to understand the 
interpretability of the models and the features which will be 
elucidated in Sect. 5.7.

Figure 8 display the ROC-AUC results for our classifiers 
exhibit remarkable efficacy with the proposed fusion-based 
FS, with several models like KNN, SVM, Bag, GBD, LGB, 
RF, STACK, Voting, and XGB achieving the pinnacle of per-
formance with a 100% AUC score. This level of accuracy is 
indicative of an extraordinary discriminative capacity, suggest-
ing that the models are highly adept at distinguishing between 
the positive and negative classes. Such high AUC scores, typi-
cally rare in complex real-world scenarios, reflect the potent 
impact of advanced preprocessing and feature selection tech-
niques, particularly the Fusion-based Feature Selection method 
applied in this study. Meanwhile, classifiers like QDA, Tree, 
and Ada achieved an AUC scores between 97.7 and 97.9%, 
also displayed commendable performance, confidently iden-
tifying the correct class labels with a high degree of accuracy. 
Their slightly less than perfect scores may point to a robustness 
that is advantageous in practical applications, ensuring that the 
models maintain high performance on unseen data. In sum, 
the exemplary AUC scores across our classifiers are a testa-
ment to the robustness of the feature selection methodology 
and the classifiers' abilities. This performance not only sets a 
benchmark for future predictive modeling endeavors but also 
demonstrates the potential of well-tuned models to achieve 
near-perfect classification in complex datasets.

When dealing with imbalanced datasets, it is typical to 
utilize resampling approaches to prevent the model from 

exhibiting bias towards the dominant class and a good tech-
nique we utilized is oversampling, which involves duplicat-
ing the minority class in order to achieve a balanced distribu-
tion of classes. With the huge imbalance of cases between 
classes in the UCI CKD dataset, employing this augmenta-
tion makes the size of the new combined dataset to sur-
passed the original 400 samples, thus making a sum of 475 
samples. Therefore the model is evaluated with 95 samples 
as seen in confusion matrix plot of Fig. 9 and models like 
RF, SVM, LGB, Voting and XGB have no misclassification 
on the secondary diagonal. Generally, a greater value on 
the main diagonal of the confusion matrix indicates better 
performance of the model.

Figure 10 depicts the learning curves of both single and 
ensemble models by using the Proposed FFS method. Also, 
it can be seen that aside the quadratic discriminant analy-
sis (qda), all the other classifiers converge gradually as the 
number of sample data increases. More so, it could be seen 
that all models aside from AdaBoost and SVM have better 
efficiency and gained higher cross validation score when 
the data sample is around 300. Generally, this depicts the 
robustness of the proposed model.

5.6  Computational cost

Generally, Figs. 11 and 12 illustrate the execution time taken 
for each single and ensemble classifier to make prediction 
and it could be seen that there remains consistency even with 
and without feature selection respectively. Additionally, the 
single classifier in Fig. 9 like KNN and QDA, a well as Ada 
classifier in Fig. 10 consistently have the lowest execution 
times within 0.008–0.284 s which is fast, while other clas-
sifiers like Bag and GBD show slightly higher times within 
1.705–38.330 s.

However, the differences in execution times are not sub-
stantial and do not indicate a significant impact of feature 
selection on computation time. Therefore, it can be observed 
that feature selection does not significantly affect the compu-
tational cost of classifiers in this context, with minor varia-
tions in execution times for different models. Lastly, it can 
be seen that Fig. 11 as compared to Fig. 12 has QDA to be 
the least execution time of 0.008 s, thereby outperforming 
other algorithms in terms of speed.

5.7  SHAP interpretability discussion

This section illustrates the analysis of the black-box ML 
models used in the experiment with various SHAP plots 
such as summary plot, waterfall plot and dependency plot.

Fig. 8  ROC Curve of the proposed fusion-based FS using several 
classifiers
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5.7.1  SHAP summary plot (bar) interpretability

The SHAP feature summary plot as seen in Fig. 13 is a 
method to provide a comprehensive explanation of each 
model and the features that have significant SHAP values 
are considered more important. The features are arranged 
in descending order of importance. The significance of a 

feature can be elucidated by the extent of its categoriza-
tion capability and greater its SHAP value, the more sig-
nificant the feature becomes. Identifying the key factors that 
significantly influence the prediction of CKD can enhance 
its diagnostic effectiveness and save unnecessary expenses 
associated with examinations. The significance of each fea-
ture is computed using both the single and ensemble models.

Fig. 9  Confusion matrix of Proposed FFS on both single and ensemble models
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The SHAP summary plots illustrate that the primary 
influences affecting the diagnosis of CKD are rbc from LDA 
and pcc from PCA found in most models. These major influ-
ences, LDA (rbc) and PCA (pcc) were identified as signifi-
cant characteristics influencing CKD in SVM, KNN, Tree, 
QDA, XGB, GBDT, Ada, RF, Stacking, Voting, bagging and 
LGB models. Furthermore, rbc from LDA is identified as the 

most significant influence in terms of relevance in both the 
single and ensemble models.

5.7.2  SHAP individual summary plot (dot) interpretability

In order to investigate the extent to which the aforemen-
tioned features, as well as other features, affect the prediction 

Fig. 10  Comparison of the learning curve of different models using Proposed FFS technique
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of CKD, the SHAP values of the relevant features were indi-
vidually computed as depicted in Fig. 14. Each data point in 
the dataset is depicted on the graph, with the characteristics 
displayed on the y-axis and the Shapley values displayed 
on the x-axis. The data is organized based on its relevance 
to disease prediction and ranked in a descending order. It is 
commonly employed for the purpose of interpreting feature 
importance and its impact. A data instance with a feature 
value of zero on the x-axis indicates that this characteristic 
has no contribution to the overall value of that instance. The 
magnitude and direction of the contribution increase when 
the SHAP value deviates from zero. The zero line symbol-
izes no contribution, but the magnitude of contributions 
increases as the SHAP value deviates from zero. In Fig. 14a, 
an increased occurrence of LDA (rbc) reduces the likelihood 
of developing CKD and vice versa, whereas, the presence of 
PCA (pcc) reduces the risk of CKD. Furthermore, it could 
be seen in stacking model plot of Fig. 14a that other fea-
tures contribute less as the SHAP value is located within 

zero line. SVM plot in Fig. 14b reveals that LDA(rbc) and 
PCA(pcc) exhibit the most significant positive SHAP values, 
exerting a substantial influence on the SVM model’s output 
by promoting higher predictions when these features have 
elevated values.

Additionally, LDA(rbc) and PCA(pcc) wide spread indi-
cates that these features have a substantial influence on the 
predictions of the KNN model as presented in Fig. 14c, with 
considerable variation observed across different instances. 
In Fig. 14d, the RF model demonstrates a robust and favora-
ble effect on the output for LDA(rbc) with closely grouped 
SHAP values, suggesting a persistent and significant influ-
ence on model predictions. The features in the QDA model, 
including PCA(ane) and FA(al), have SHAP values that are 
tightly grouped around zero, indicating a consistently small 
and uniform influence on the model’s output as described 
in Fig. 14e. The features LDA(rbc) and PCA(pcc) have a 
significantly positive SHAP value impact, indicating that 
they are powerful predictors in the Voting ensemble model 

Fig. 11  Computational cost of 
each single classifier in second 
(s)

Fig. 12  Computational cost 
of each ensemble classifier in 
second (s)
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depicted in Fig. 14f. The Bagging model demonstrates that 
characteristics such as LDA(rbc) exhibit both positive and 
negative SHAP values, which are evenly distributed, hence 
influencing the model’s output in both positive and negative 
directions as detailed in Fig. 14g.

More so, the SHAP values of AdaBoost for LDA(rbc) 
and PCA(pe) are much higher, suggesting that these fea-
tures have a substantial impact on increasing the model’s 
output as illustrated in depicted in Fig. 14h. In addition, 
Gradient Boosting model in depicted in Fig. 14i shows that 
the feature LDA(rbc) has high positive SHAP values, indi-
cating that this feature has a large influence on predicting 
higher outcomes. LightGBM model highlights LDA(rbc) 
as a prominent feature with significantly positive SHAP 

values, suggesting that it plays a crucial role in producing 
greater prediction values as presented in Fig. 14j. Fig-
ure 14k which is the XGBoost model reveals that char-
acteristics like LDA(rbc) have a broader distribution of 
SHAP values, indicating a varied influence on the model’s 
output across various instances. In general, we observe a 
consistent pattern of feature impacts, even when there exist 
variations in the degree and range of these impacts. Lastly, 
Fig. 14l the stacking classifier, highlight that features like 
LDA(rbc), PCA(pcc) and FA(wbcc) are the most influen-
tial. The color gradient indicates the direction of this influ-
ence, with high values of these features typically driving 
the model towards a positive diagnosis, thereby providing 
insights into the model’s decision making process.

Fig. 13  Visual representation of the importance feature in SHAP summary value for: a SVM, b KNN, c Decision Tree, d RF, e QDA, f Voting, g 
Bag, h Ada, i GDBT, j XGB, k LGB, l Stacking (sc)
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5.7.3  SHAP waterfall plot interpretability

Figure 15 displays the waterfall plot which represents the 
local explainability of the model performance on a per-
instance basis. This plot provides a concise overview of the 
contribution of each attribute in predicting the classification 
of an individual occurrence. The features of the instance 
are represented on the y-axis. Each row is designated with 
either a red or blue hue. The color red signifies a positive 
contribution of the corresponding aspect, whereas the color 
blue signifies a negative contribution of the corresponding 
feature in the outcome of the given instance. The impact of 
each feature is determined by the value displayed in the hori-
zontal box, which represents the deviation from the expected 
model output based on the background dataset to the model 
output for this specific prediction.

The SHAP waterfall plot in Fig. 15a indicates that the 
initial output begins with a value that implies a lower prob-
ability event. The model’s prediction had the greatest sig-
nificant augmentation due to LDA(rbc), which contributed a 
SHAP value of + 0.54. This was followed by smaller positive 
changes from PCA(pcc) and other features. The cumula-
tive impact yields a conclusive forecast of 0.995, signify-
ing a substantial probability of the anticipated result. The 
model’s output is significantly impacted by a considerable 
positive contribution from LDA(rbc), resulting in a final 
prediction value of 0.995. The feature exhibits the most sig-
nificant increase, but PCA(pcc) also has a positive contribu-
tion, although to a lower degree as displayed in Fig. 15b. In 
Fig. 15c, the initial value is negative, suggesting a less prob-
able occurrence. The inclusion of the LDA(rbc) feature sig-
nificantly enhances the model's output, with the PCA(pcc) 

Fig. 13  (continued)
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feature making the most major beneficial impact, resulting 
in a final prediction that is very near to one.

Similar to Fig. 15c, LDA(rbc) once again has a notable 
impact on enhancing the model's output. Principal Com-
ponent Analysis (PCA) positively contributes, while Fac-
tor Analysis (FA) negatively impacts it, resulting in a final 
output of exactly one, indicating a highly probable event as 
presented in Fig. 15d. This plot in Fig. 15e likewise begins 
with a baseline value representing a less probable occur-
rence. Among the features, FA(bu) has the highest influence, 
contributing a considerable positive SHAP value of + 0.27 
with LDA(rbc) also contributing positively. The model’s 
ultimate forecast attains a value of 1, indicating a high level 
of assurance in the projected outcome. In Fig. 15f, the model 

output is primarily affected by positive contributions from 
FA(bu) and PCA(pcc), with a small negative contribution 
from PCA(ba) and the ultimate result is significantly ele-
vated, measuring 0.91. Also, Fig. 15g demonstrates a sig-
nificant favorable impact from FA(bu), with LDA(rbc) also 
exerting a positive influence on the model's output. The final 
predicted value is decreased by FA(pot), but, it still stays 
quite high at 0.818.

Furthermore, in Fig. 15h, PCA(pe) and FA(wbcc) have 
the most notable beneficial impacts, while PCA(appet) has 
a modest negative effect on the output. The ultimate fore-
cast is singular, emphasizing the significant impact of the 
positive SHAP values. Also, it could be seen that FA(bu) 
has a significant positive impact, accompanied by relatively 

Fig. 14  Summary Plot of SHAP value for: a Stacking (SC), b SVM, c KNN, d RF, e QDA, f Voting, g Bag, h Ada, i GDBT, j XGB, k LGB, l 
Stacking (sc)
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lower contributions from PCA(pcc) and FA(wbcc). The ulti-
mate model forecast is exceptionally high, reaching 0.998 
in Fig. 15i. FA(bu) once again exhibits the highest positive 
increment, with PCA(pcc) following closely behind. The 
ultimate result is a single value, which represents the com-
bined total of these favorable inputs in Fig. 15j. The initial 
prediction is mostly enhanced by FA(bu), with LDA(rbc) 
also making a beneficial contribution. The ultimate model 
output is a single value, demonstrating the combined impact 
of favorable contributions from these characteristics as illus-
trated in Fig. 15k. Lastly, Fig. 15l shows that the predic-
tion becomes almost certain, with a final output of 0.999. 
The feature LDA(rbc) continues to exert the greatest posi-
tive influence, while the contributions from other features 

such as FA(bu) and PCA(pcc) are very tiny but nevertheless 
positive. Together, these features collectively improve the 
accuracy of the prediction. Within every plot, LDA(rbc) and 
FA(bu) features significantly influence the model’s output, 
directing predictions towards higher probabilities of antici-
pated occurrences, despite other features’ influence.

5.7.4  SHAP dependency plot interpretability

Next, we examine the relationship between individual fea-
tures of CKD and determine if feature values remain con-
stant or if they change in relation to other features. Figure 16 
provides a SHAP dependency plot which has detailed analy-
ses of the significance and influence of features for CKD 

Fig. 14  (continued)
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diagnosis. The analysis compares one feature to another and 
determines whether there is an interaction effect between the 
two. The plot’s x-axis displays the feature, while the y-axis 
depicts the anticipated SHAP value for that feature.

The SHAP dependence plot in Fig. 16a for FA(pe) against 
the SHAP value for LDA(rbc) is used to determine the 
impact of a feature on CKD prediction. If there is a gradient 
or pattern in color that corresponds with the change in SHAP 

values, it suggests that LDA(rbc) interacts with FA(pe) to 
influence the model prediction. Clusters of similar colors 
with higher or lower SHAP values indicate that LDA(rbc) 
significantly contributes to the predictive effect of FA(pe). 
A vertical spread of points at a single value of FA(pe) with 
varying colors indicates that the SHAP value of FA(pe) is 
affected by different values of LDA(rbc). If the SHAP value 
increases or decreases as FA(pe) increases, it suggests a 

Fig. 15  Waterfall Plot of CKD for: a SC, b LGB, c SVM, d KNN, e Tree, f RF, g XGB, h QDA, i Voting, j Ada, k GDBT, l LGB
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positive or negative correlation with the risk of CKD. Fig-
ure 16b shows that the SHAP values for FA(sc) vary in 
impact on the model's output, with most clustered near zero. 
The color difference between pink and blue points suggests 
an interaction effect, with higher SHAP values enhancing 
the impact of FA(sc) on the model’s prediction which is 
important for identifying nuances in CKD diagnosis. Fig-
ure 16c indicates consistent higher or lower SHAP values, 
while outliers indicate strong or weak interactions. Also, 
the color gradient suggests an interaction effect between 
FA(wbcc) and PCA(bu), with higher or lower values of 
PCA(bu) enhancing or diminishing FA(wbcc)’s effect on 
model predictions. Figure 16d plot shows a cluster of points 
with high SHAP values in the middle range of LDA(rbc) val-
ues, suggesting a positive impact on the model's prediction 
of CKD. However, the cluster of blue points on the far right 
with low SHAP values suggests a decrease in the likelihood 
of CKD. The color distribution within the clusters suggests 
an interaction between LDA(rbc) and PC(Apcc).

Also, Fig. 16e shows that PCA(bgr) typically has a 
modest impact on the model's predictions, with SHAP 
values clustered between − 0.02 and 0.03. The color dis-
tribution suggests an interaction effect between PCA(bgr) 
and FA(wbcc), with points with higher FA(wbcc) values 
having positive SHAP values and vice versa. Outliers 
with higher SHAP values indicate a stronger influence on 
the model’s prediction. Figure 16f depicts that PCA(bp) 
has a variable impact on the model’s predictions, with 
a concentration of points around zero. A cluster of pink 
points indicates a slight decrease in the likelihood of the 
outcome being predicted as PCA(bp) approaches zero. 
Blue points correspond to lower LDA(hco) values, with 
some concentration at higher values, thus indicating that 
the interaction effect is more noticeable with PCA(bp) 
higher values. Figure 16g shows a cluster of blue points 
near zero, suggesting a low impact of PCA(htn) on the 
model's prediction. Outlying pink points indicate sig-
nificant positive or negative impacts. A cluster of blue 

Fig. 16  SHAP dependency plot with some features
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points around the center suggests a less influential range 
of PCA(htn) values combined with lower PCA(pcc) val-
ues indicate a significant interaction region. Figure 16h 
reveals a significant variation in SHAP values, particu-
larly for PCA(pcc) values around 0, suggesting a signifi-
cant impact on CKD prediction. Higher values are associ-
ated with CKD severity. The color distribution explores 
the interaction between PCA(pcc) and LDA(rbc). Fig-
ure 16i illustrates that FA(sod) has varying effects on the 
model's output, with larger absolute SHAP values having 
a more significant impact. A single outlier with a high 
positive SHAP value and high FA(sod) value indicates a 
significant impact. The color distribution shows a cluster 
of points with mid-range LDA(hbc) values, suggesting 
low impact. However, extreme values indicate an inter-
action effect, influencing the model's predictions. This 
interaction could help understand the interaction of bio-
chemical markers in CKD pathology.

5.8  Comparative study of related works

Table 9 illustrates the comparison between our proposed 
method and other recent efforts, based on the average accu-
racy. This table demonstrates that each of the studies utilized 
distinct classification methods to identify Chronic Kidney 
Disease (CKD) from the UCI ML repository. Conversely, 
we utilized single and ensemble models, summing up to 
twelve ML classifiers. In addition, the borderline SMOTE 
and MICE algorithms [60, 61] have been utilized to address 
the issue of imbalanced data and to fill in the missing values 
respectively. Akter et al. [2] obtained an average accuracy 
of 91.14% by employing numerous machine learning meth-
ods with multiple imputations for missing values, whereas 
researchers in [35, 62] achieved similar performance of 
98.75%, thus, their performances are less when compared 
to our accuracy result. Likewise, other studies [3, 20, 22, 
32, 63] that utilized the ML classifiers as seen in Table 9 
obtained an accuracy of 97.77%, 94.12%, 95%, 97.71% and 
97.5% respectively, which is far smaller with our method 

Table 9  Comparative Analysis with Recent Works

References Handling data 
imbalance

Missing value 
imputation

Models Split-ratio method SHAP values Avg Acc (%)

Akter et al. [2] – Multiple imputa-
tions

ANN, RF, LSTM, 
RNN, GRU, MLP, 
AdaBoost

tenfold CV
Training:90%
Test: 10%

– 91.14

Dritsas et al. [3] – SMOTE NB, SVM, ANN, 
KNN, RF, Tree, 
SGD, Stacking, 
Voting. AdaBoost

tenfold CV
Training:90%
Test: 10%

– 97.77

Mondal et al. [4] – Multiple imputa-
tions

Optimized CNN, 
ANN and LSTM

Training:80%
Test: 20%

– 96.5

Chittora et al. [20] SMOTE – ANN, LR, LSVM, 
KNN, RT

Training:50%
Test: 50%

– 94.12

Elhoseny et al. [22] – – ACO Algorithm tenfold CV
Training:90%
Test: 10%

– 95.00

Khan et al. [32] – Mean NBTree, NB, LR, 
SVM, CHIRP, 
MLP

tenfold CV
Training:90%
Test: 10%

– 97.71

Almansour et al. 
[35]

– Mean SVM, ANN tenfold CV
Training:90%
Test: 10%

– 98.75

Alsuhibany et al. 
[37]

ADASYN Data mining DBN, CNN, - – 96.91

Raihan et al. [62] – – XGBoost tenfold CV
Training:70%
Test: 30%

Summary plot 98.75

Moreno-Sanchez
et al. [63]

– Multiple imputa-
tions -

DT, RF, Tree, Ada, 
XGB

Training:70%
Test: 30%
fivefold CV

PDP plot and water-
fall plot

97.5

Proposed FFS-IML Borderline SVMS-
MOTE

MICE Single and Ensem-
ble classifiers

Shuffle-split CV
Training:80%
Test: 20%

Waterfall, summary, 
and dependency 
plots

99.47
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with a decrease rate of 1.53%, 5.18%, 4.3% and 1.8% sequen-
tially. Furthermore, other researchers [4, 37] applied deep 
neural networks on the same dataset obtained an accuracy 
of 96.5% and 96.91% which is 2.8% and 2.39 respectively 
less than our proposed method. Thus, our proposed model 
has been demonstrated to effectively enhance the accuracy 
of predicting CKD.

6  Conclusion and future work

This research proposes a novel fusion-based feature selec-
tion (FFS) method for classifying chronic kidney disease 
using machine learning classifiers and SHAP values. The 
proposed model employs the integration of dimensionality 
reduction of PCA, FA, and LDA which generates feature 
space that considers the highest amount of variation in the 
data, the covariance between the observed variables, and 
a linear combination of observed variables that optimizes 
the separation between classes. Furthermore, the missing 
values and imbalanced data were addressed using robust 
statistical techniques using MICE imputation and border-
line SVMSMOTE algorithms respectively, in order to pre-
vent overfitting and bias. The dataset was obtained from the 
UCI Machine Learning Repository which comprises 400 
patients with 24 distinct attributes. Data split of 70:30 for 
train-test split ratio and also on tenfold cross validation were 
both used to validation the efficacy of the proposed FFS 
model. More so, both single and ensemble classifiers were 
optimized and employed to predict the diagnosis of CKD. 
Quadratic Discriminant Analysis (QDA) outperformed the 
other eleven algorithms in terms of speed with 0.033 s while 
the longest execution time is the gradient boosting decision 
tree (GBDT) with 38.33 s. The advantage of the study is that 
the proposed method demonstrated superior performance 
based on empirical evidence, achieving a perfect score of 
100% in all of the evaluation metrics for SVM, LGB, RF, 
Voting and XGB classifiers compared to other existing lit-
erature that also utilized the same dataset. Furthermore, 
another advantage of this study is the integration of SHAP 
values which provided a clear, interpretable understanding 
of model predictions, enhancing transparency and aiding 
clinician experts in decision making. Therefore, clinicians 
would not only be able to diagnose the condition early using 
a smaller range of signs, but they could also concentrate on 
addressing specific characteristics to prevent the formation 
of chronic kidney disease or perhaps reverse its progression.

Despite its strength, the proposed model has limitations, 
such as its dependency on linear dimensionality reduc-
tion strategies, which may not capture complex, nonlinear 
relationships in the data. The study is also limited by the 
use of a single dataset, which may constrain the generaliz-
ability of the findings. Future work will explore non-linear 

dimensionality reduction methods and also focus on evaluat-
ing the prediction model in a clinical environment to assess 
its accuracy and reliability when applied to new patients' 
data. Also, we plan to employ deep learning methodology 
to accurately determine the stage of this disease and also 
utilizing other datasets to assess the dependability of our 
proposed approaches.
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