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Multi-Classification of Breast Cancer Lesions in  

Histopathological Images Using DEEP_Pachi: Multiple  

Self-Attention Head 
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and Zhiguang Qin 1,* 
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2 School of Management and Economics, University of Electronic Science and Technology of China,  

Chengdu 610054, China; altabbd@uestc.edu.cn 
3 School of Computer Science and Engineering, University of Electronic Science and Technology of China, 

Chengdu 610054, China; mh.nkanta@std.uestc.edu.cn 

* Correspondence: ukwuoma@std.uestc.edu.cn (C.C.U.); qinzg@uestc.edu.cn (Z.Q.) 

Abstract: Introduction and Background: Despite fast developments in the medical field, histological 

diagnosis is still regarded as the benchmark in cancer diagnosis. However, the input image feature 

extraction that is used to determine the severity of cancer at various magnifications is harrowing 

since manual procedures are biased, time consuming, labor intensive, and error-prone. Current 

state-of-the-art deep learning approaches for breast histopathology image classification take fea-

tures from entire images (generic features). Thus, they are likely to overlook the essential image 

features for the unnecessary features, resulting in an incorrect diagnosis of breast histopathology 

imaging and leading to mortality. Methods: This discrepancy prompted us to develop DEEP_Pachi 

for classifying breast histopathology images at various magnifications. The suggested DEEP_Pachi 

collects global and regional features that are essential for effective breast histopathology image clas-

sification. The proposed model backbone is an ensemble of DenseNet201 and VGG16 architecture. 

The ensemble model extracts global features (generic image information), whereas DEEP_Pachi ex-

tracts spatial information (regions of interest). Statistically, the evaluation of the proposed model 

was performed on publicly available dataset: BreakHis and ICIAR 2018 Challenge datasets. Result: 

A detailed evaluation of the proposed model’s accuracy, sensitivity, precision, specificity, and f1-

score metrics revealed the usefulness of the backbone model and the DEEP_Pachi model for image 

classifying. The suggested technique outperformed state-of-the-art classifiers, achieving an accu-

racy of 1.0 for the benign class and 0.99 for the malignant class in all magnifications of BreakHis 

datasets and an accuracy of 1.0 on the ICIAR 2018 Challenge dataset. Conclusion: The acquired 

findings were significantly resilient and proved helpful for the suggested system to assist experts 

at big medical institutions, resulting in early breast cancer diagnosis and a reduction in the death 

rate. 

Keywords: histopathological images; breast cancer; medical images; transfer learning;  

multi-head self-attention; image classification 

 

1. Introduction 

Cancer is among the majority of deadly diseases, claiming the lives of millions of 

people each year. Breast Cancer (BC) is the most common cancer and the leading cause of 

death among women [1]. As per World Health Organization (WHO) data, 460,000 people 

die annually from BC out of 1,350,000 cases [2]. The United States (US) alone recorded 
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about 268,600 instances of BC in 2019, setting a new record [3,4]. BC develops due to ab-

errant cell proliferation inside the breast [5]. The breast anatomy comprises several blood 

arteries, tendons and ligaments, milk ducts, lacrimal gland, and lymph ducts [6]. Benign 

carcinoma is squamous cell carcinoma that forms due to minor anomalies in the breast. 

Malignant carcinoma, in contrast, is classed as melanoma and further characterized as 

invasive carcinoma or in situ carcinoma [7]. Invasive BC expands to nearby organs and 

causes difficulties [8,9], whereas in situ carcinoma stays limited to its territory and does 

not affect surrounding tissues. To avoid future progression and problems, BC must be 

identified earlier and correctly classified as benign or malignant carcinoma. As a result, a 

prompt and accurate therapy may be devised, lowering the disease’s fatality rate. Diverse 

imaging techniques are used to identify BC, such as Histopathology (HP) [10], Computed 

Tomography (CT) [11], Magnetic Resonance Imaging (MRI) [12], Ultrasound (US) [13], 

Mammograms (MGs) [14], and Positron Emission Tomography (PET). Statistics reported 

in recently published studies on imaging methods [15] reveal that 50% of datasets utilized 

in BC-related research are MGs, 20% are US, 18% are MRI and 8% are HP. The remaining 

percentage includes commercial records and data from different forms [6,12,16]. Further 

studies prove that HP images do not offer binary identification and classifications but 

support the multiclass identification and classification of BC subtypes [17–19]. In this pa-

per, a BHI dataset at various magnifications (40×, 100×, 200×, 400×) is studied. The prepro-

cessing of various magnification varies. For instance, with 100× magnification, a specialist 

examines squamous development, mesenchymal involvement, and tumor localization to 

determine the carcinoma. Nevertheless, developing an accurate and fast model to evalu-

ate BHI at various magnifications is difficult due to multiple factors such as variable pixel 

intensity, microscopic size nucleus, diverse image characteristics, a wide variation of nu-

clei, the existence of distortions, and so on. The current effort aims to create a deep learn-

ing-based attention model to categorize BHIs in various magnifications. 

Several strategies have been studied for classifying BHIs under 100× magnification 

[20,21]. Conventional approaches are always focused on feature extraction. On the other 

hand, finding relevant handmade characteristics necessitates experience and expertise but 

these might fail to grasp all permutations in the dataset. Deep learning-based approaches 

have recently gained prominence as processing computing capacity has improved. Their 

ability to analyze end-to-end provides it a better choice for BHI classification. Convolu-

tional layers are used in deep learning algorithms to extract input image features. These 

convolutional layers often extract unwanted features alongside the needed parts or over-

look the essential features. However, the extracted features influence the result and choice 

of malignancy; thus, disregarding these aspects may result in incorrect image evaluation. 

As a result, the extracted characteristics by the convolutional layers of CNN are insuffi-

cient for classifying BHIs. We present an attention-based deep learning framework that 

employs global and local features to determine tumor malignancy. The mechanism of the 

human brain to interpret visual data while still analyzing the significance of input ele-

ments is known as attention. This neurological mechanism enables exclusive focus on a 

single piece of information while ignoring other discernible details. Nevertheless, in op-

position to the competency of attention, the conventional and commonly used CNN clas-

sifier examines characteristics more broadly. It is not assured of extracting relevant clinical 

knowledge subconsciously comparable to trained networks [22]. Self-attention is a signif-

icant advancement of computer vision [23–28]. These advancements focus exclusively on 

essential features in an informal m with no external guidance. The CNN models serve as 

the backbone of the self-attention models. They are trained end-to-end, with no modifica-

tions in the training phase. Thus, employing self-attention processes inside conventional 

CNN yields several advantages in accuracy, comprehensibility, and robustness on clinical 

vision tasks. 
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1.1. Diagnostic Medical Methods Used in the Investigation of BC 

Having mentioned several medical imaging methods used in diagnosing BC, this pa-

per describes the imaging methods related to our task and why we chose histopathologi-

cal images in this section. PET is an accepted imaging method that might provide handy 

information regarding BC; nonetheless, it is usually utilized for early grading of advanced 

or metastatic invasive and reactive breast cancers, assessing progress to therapies and de-

tecting and localizing family history of the disease [29]. As a result, we did not include it 

in our discussion. 

The most often and extensively used technique is MGs [30–32], as they are easily ac-

cessible as public datasets. MGs are small breast X-rays [33] that are simple and frequently 

employed as the initial test for BC identification [34]. Regrettably, because of the vast dis-

crepancies in shape, the surface area of breast tissues and morphological form, these are 

not reliable as they are associated with health effects, including radiation exposure risks 

for carriers and radiologists and overdose of radiation effects for carriers [35]. Moreover, 

due to inadequate specificity, these techniques subject a considerable proportion of the 

population (65–85%) to unnecessary biopsy procedures [36,37]. Such unnecessary biopsies 

increase the hospitalization cost for individuals and cause mental stress. Due to such lim-

itations, US imaging is considered a much better option for breast cancer diagnosis and 

detection [38,39]. 

US imaging can significantly boost detection accuracy by 17% while decreasing over-

all needless biopsy procedures by 40% [39] compared with MGs. Sonograms are another 

title for breast US in clinical medicine. US might be a superior option to MGs for BC as-

sessment and diagnosis due to its adaptability, reliability, sensitivity, and selectivity [40]. 

On the other hand, BC lesion identification and classification with US imaging need radi-

ologists’ experience and knowledge due to its complexity and speckle [41]. Aside from the 

complicated imaging form, US image-based assessment in female patients produces un-

satisfactory false detection results and misclassification [42]. As a result, there is insuffi-

cient evidence to recommend the use of US in the diagnosis and treatment of BC. 

MRI breast images yield better sensitivity for detecting BC in dense tissue [43]. MRI 

images provide a more thorough overview of breast tendons than CT, US, or MGs images 

because multiple samples from different angles constitute a patient’s breast image sample 

[44]. Since MRI scans are more comprehensive than other alternative imaging techniques, 

they may uncover tumors not apparent on different imaging techniques or be deemed 

malignant [45]. Despite MRI’s high sensitivity [46], its adoption for BC diagnosis is limited 

due to its expensive cost [47]. Conversely, newer MRI methods, such as DWI (Diffusion-

Weighted Imaging) and UFMRI (Ultrafast Breast MRI), provide much improved diagnos-

tic precision with faster processing efficiency and lower expenses [48,49]. 

HP is the process of removing a heap from a questionable anatomical and physiolog-

ical spot for screening and extensive investigation by specialists [50]. In clinical medicine, 

this procedure is commonly referred to as a biopsy. Biopsy specimens are mounted over 

a microscope slide clouded with Hematoxylin and Eosin (H&E) for examination [51]. HP 

images come in two types: (i) Whole Slide Images (WS), which are computerized color 

imaging, and (ii) image patches derived from WSI. Several researchers have effectively 

employed HP images in the multiclassification of BC due to tissue level examination [17–

19]. BC identification and classification with HP images has several benefits over MGs and 

other imaging alternatives such as MRI and US. In particular, HP images do not offer only 

binary identification and classifications but support multiclass identification and classifi-

cation of BC subtypes. Table 1 illustrates the summary of the discussed Breast cancer mo-

dalities, its robustness, constraints and available datasets. 
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Table 1. Robustness and constraints of various imaging techniques for BC diagnosis and treat-

ment. 

Imaging Tech-

niques 
Robustness Constraints Public Datasets 

MG 

1. Reliable and premium approach for cap-

turing, storing, and processing images of 

breast tissue [52,53] 

2. Unlike HP images, they do not need a 

comprehensive experience or professional 

understanding to analyze and classify. 

1. Due to their microscopic dimensions and scat-

tered form features, they have restricted abilities 

in acquiring segments and sub in the human 

breast [54]. 

2. Unsuitable for detecting breast cancer in thick 

breasts due to the absence of malignant tissues 

[55]. 

3. Not reliable in identifying BC; hence more 

screening may be necessary for accurate assess-

ments [56]. 

-BCDR 

-CBIS-DDSM 

-MIAS 

-Mini-MIAS 

-DDSM 

-InBreast 

US 

1. Does not make patients vulnerable to 

dangerous rays and is thus regarded ex-

ceedingly safe, particularly for expectant 

mothers [57]. 

2. These are specifically convenient imaging 

techniques for identifying BC in thick 

breasts, where MGs fail [58]. 

3. Allows for viewing a breast tumor from 

multiple viewpoints and configurations, 

lowering the possibility of a negative result 

assessment. 

1. Often yield false diagnoses if the scanner 

probe is not moved or pushed appropriately [59]. 

2. They cannot correctly portray the tumor out-

line in the breast due to its signal weakness to 

the human muscles [60]. 

3. US images are of low quality compared to the 

images of MGs; thus, obtaining ROI for more ad-

vanced analysis is challenging with US imaging. 

-BCDR 

-BUSI 

MRI 

1.  MRI can detect questionable spots, 

which can be explored further with autopsy 

(MRI-assisted biopsy). 

2. MRI, just like US, does not make patients 

vulnerable to any dangerous radioactive 

materials. 

3. MRI gives a thorough description of soft 

breast internal tissues as well as the ability 

to record 

1. To improve MRI images, supplement chemi-

cals are frequently administered, which might 

cause sensitivities or other issues and are thus 

not suggested for patients, particularly renal pa-

tients [61]. 

2. MRI is typically not suggested throughout 

pregnancy [62] and is primarily advised as a fol-

low-up test only after an MGs-based examina-

tion has been performed. 

3. MRI is a pricey procedure relative to MGs or 

US; hence, it is not often used for BC diagnosis. 

MRI offers highly accurate data about the inte-

rior breast tissues, but it can overlook some ma-

lignant areas that MGs can identify [63]. 

Duke-Breast-Cancer 

RIDER Breast MRI 

HP 

1. Images of HP are RGB images that are 

very efficient in diagnosing many types of 

malignancies and provide a greater efficacy 

for an early phase of BC. 

2. An in-depth study of breast tissues is fea-

sible with HP images, resulting in a more 

reliable examination of BC than other imag-

ing alternatives. 

3. Multi ROI images may be produced from 

full flip HP images, increasing the likeli-

hood of detecting cancer tissues and lower-

ing the number of false positives. 

1. HP images are obtained by mammogram, 

which is an expensive approach with significant 

potential complications, necessitating special at-

tention from pathologists as comparable to other 

imaging alternatives 

2. HP images are easy to misinterpret, and the 

conventional examination of HP images takes a 

long time [64]. As a result, experts are needed for 

correct interpretation. 

3. Extreme caution is required during histo-

pathology specimen preparation (From the ex-

traction of a tissue sample from the breast to the 

application of microscope to the extracted tissue 

sample, the adjustment/control of the color dis-

parities caused by different staining processes) to 

reduce the possibility of a mistaken diagnosis. 

UCI (Wisconsin) 

BICBH 

BreakHis 
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Identified Pub-

lic site for BC 

Dataset 

http://peipa.essex.ac.uk/info/mias.html, http://marathon.csee.usf.edu/Mammography/Database.html, https://bio-

keanos.com/source/INBreast, https://bcdr.ceta-ciemat.es/information/about 

https://wiki.cancerimagingarchive.net/display/Public/, https://www.repository.cam.ac.uk/handle/1810/250394, ac-

cessed on 20 March 2022. 

1.2. Related Studies 

The AI approach’s classification of BHI has received much attention in the research 

field [10,65–67]. There are significant obstacles in developing AI systems to examine these 

images, such as cancerous specimen variability, illumination variations and hue varia-

tions, intraclass fluctuations, different magnifications, and the existence of abnormalities, 

among others. Researchers used the traditional technique and deep learning models, 

which are further explored below and summarized in Table 2. 

Table 2. Summary of the related studies. 

Ref Year Image Type Techniques Task Recorded Result 

[8] 2017 - ConvNet classifier Detection  

75.86% Dice coefficient 

71.62% positive predic-

tion 

96.77% negative pre-

diction (pixel-by-pixel 

evaluation) 

[12] 2017 - 

Multiscale Basic Image Features, 

Local Binary Patterns, Random 

Decision Trees Classifier 

Classification 84% Accuracy 

[32] 2017 

BreaKHis 

Augmented 

BreaKHis 

CSDCNN model 
Multi-Classifica-

tion 
93.2% accuracy 

[37] 2017 - 
Hybrid Contour Model-Based Seg-

mentation with SVM Classifier 

Binary Classifi-

cation 

Multi-Classifica-

tion 

88% AUC. 

[36] 2018 BreaKHis 
VGG16, VGG19, and ResNet50 

with Logistic Regression  

Binary Classifi-

cation 

92.60% accuracy, 

95.65% AUC, 

95.95% precision score 

[33] 2018 
BACH (ICIAR 

2018) 
Two-Stage CNN 

Multi-Classifica-

tion 
95% accuracy 

[4] 2018 BreaKHis 
DL model with handcrafted fea-

tures 

Mitosis detec-

tion 

92% Precision 

88% Recall 

90% F-Score 

[5] 2018 BreaKHis Transfer Learning based CNN 
Mitosis detec-

tion 

15% F1-Score improve-

ment 

[27] 2018 TMAD, OUHSC Transfer Learning. 
Binary Classifi-

cation 

90.2% Accuracy with 

GoogleNet 

[23] 2019 
BACH (ICIAR 

2018) 
Hybrid CNN + Deep RNN 

Multi-Classifica-

tion 
91.3% Accuracy 

[24] 2019 BreaKHis Small SE-ResNet 
Binary Classifi-

cation 

98.87–99.34% Binary 

Classification Accuracy 

90.66–93.81% 
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Multi-Classifica-

tion 

Multi-Classification 

Accuracy 

[25] 2019 

BACH (ICIAR 

2018) 

Bioimaging2015 

Extended Bioimag-

ing2015 

CNN + RNN + Attention Mecha-

nism 

Multi-Classifica-

tion 
- 

[6] 2019 BreaKHis 

Mask R-CNN network, with fea-

tures obtained from Handcrafted 

and DCNN 

Mitosis detec-

tion 
- 

[26] 2019 

BreaKHis 

L.R.H. hospital 

Peshawar Data 

Transfer Learning. 

GoogleNet, VGGNet, ResNet 

Binary Classifi-

cation 
97.53% Accuracy 

[28] 2019 BreaKHis D2TL and ICELM 
Binary Classifi-

cation 

Classification Accuracy 

96.67%, 96.96%, 98.18% 

[29] 2019 BreaKHis 
Inception_V3 

Inception_ResNet_V2 

Multi-Classifica-

tion 
- 

[30] 2019 

BreaKHis 

BACH (ICIAR 

2018) 

Deep CNN with Wavelet decom-

posed mages 

Binary Classifi-

cation 

Multi-Classifica-

tion 

96.85% Accuracy 

98.2% Accuracy 

[34] 2019  deep selective attention Classification 98% accuracy 

[21] 2020 
B.H.I.s 

BreaKHis 

Modified Inception Net-

work/Transfer Learning 

Classification 

multiclass 
- 

[22] 2020 BreaKHis 
ResHist model (Residual Learning 

CNN) 
Classification 

84.34% Accuracy 

90.49% F1-Score 

92.52% Accuracy (DA) 

93.45% F1-score (DA) 

[31] 2020 
BACH (ICIAR 

2018) 
Attention Guided CNN 

Detection and 

Classification 

90.25 ± Accuracy 

0.98425 AUC 

Single 88% Accuracy 

Ensemble 93% Accu-

racy 

[35] 2020 

BreaKHis 

BACH (ICIAR 

2018) 

CNN and multi-resolution Spatial 

Features wavelet transform 

Binary Classifi-

cation 

Multi-Classifica-

tion 

97.58% Accuracy 

97.45% Accuracy 

[38] 2020 BreaKHis CNN With Several Classifiers 
Binary Classifi-

cation 
 

[39] 2020  
VGG16, VGG19, and ResNet50 

with SVM 
  

[19] 2021 BHIs DCNN with several Optimizers Classification 99.05% accuracy 

Various conventional approaches to image analysis have been presented by numer-

ous scholars [68–71]. These approaches include several phases, such as the preprocessing 

phase, region of interest segmentation phase, the extraction of features phase, and identi-
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fication phase. In Refs. [71,72], Local Binary Patterns (LBP) were used for BHI categoriza-

tion, while the authors of Ref. [73] used the frequency distribution index, in conjunction 

with contours, to identify meiosis. Unfortunately, due to the varied properties of cancer-

ous images, appearance alone will be inadequate for effective image classification. Fur-

thermore, support vector machines (SVM) [71] and decision trees (DT) [74,75] have been 

widely investigated for image classification. These strategies focused on data prepro-

cessing since it significantly influenced the recognition rate. Such techniques depend on 

characteristics that have been handcrafted. Furthermore, detecting these handcrafted 

traits necessitates technical knowledge and expertise. Moreover, these characteristics 

might not perfectly capture all variabilities in the sample, resulting in poorer predictive 

performance. 

The ability of Deep Learning models to represent complicated patterns has made 

them a common approach for image processing. Several CNN-based methods such as 

ResNet, VGG-16, Inception, VGG-19, and others were proposed for image classification 

tasks. Ref. [76] authors employed Deep CNN for BHI classification. The authors of Ref. [8] 

used CNN to detect invasive BC. In contrast, the author of Ref. [77] used the same CNN 

approach to address the sample class imbalance and extractions of input image features 

at various BHIs Magnification. The authors of Ref. [78] employed the Residual neural net-

work for automated BHI assessment. The authors of Ref. [79] combined CNN and Resid-

ual neural network for multi-level feature extraction. The authors of Ref. [80] argued for 

the integration of squeeze and excitation blocks and residual neural network yields com-

pared to Ref [79] for this classification. The authors of Ref. [81] suggested that the combi-

nation of Ref. [79] and Ref. [80] yields a better result. They used Ref. [80]’s approach to 

extract the input image features in Latent space and used an attention mechanism [80] for 

classification. Transfer learning [82–84] has been widely investigated as it provides room 

for better model performance where there are few training samples. Ref [85] used Incep-

tion with a residual connection model via transfer learning for more feature extraction. 

Ref. [86] entails using CNN’s wavelet decomposition for image classification. Ref. [87] in-

tegrated a soft attention network to its architecture to focus entirely on the region of inter-

est alone. At the same time, the author of Ref. [88] designed a class-specific Deep CNN 

network for BHIs multiclass classification. To tackle the computational cost of processing 

huge images, the authors of Ref. [89] developed a dual-stage CNN. The authors of Ref [90] 

integrated the idea of Refs. [76,86]. They used adaptive spectral composition and an atten-

tion technique [90] for classification. 

Several researchers have employed the hybrid technique to seek a better and more 

accurate BHI classification model. The authors of Ref. [91] used the ensemble of ResNet50, 

VGG19 and VGG16 as feature extractors for a logistic regressor classifier. The authors of 

Ref. [92] suggested that a cascaded ensemble model with an SVM classifier yields better 

and more accurate results. The cascaded ensemble is seen at the feature extraction (multi-

lateral and syntactic feature) by the CNN model. Ref. [92] created an ensemble of Dense-

Net121, InceptionV3, ResNet50, and VGG-16 as feature extractors. Ref. [93] investigated 

several Deep learning pre-trained models as feature extractors and used SVM as classifi-

ers. Unfortunately, CNN-based techniques require a substantial amount of labeled train-

ing samples. Much research that focused on patch level [94] feature extraction and image-

level [95] feature extraction for BHIs classification has been performed. The author of Ref. 

[95] used a voting principle for the classification after extracting input image features via 

image and patch levels. In contrast, the authors of Ref [94] employed pre-trained models 

(ResNet and Inception architecture) for input image feature extraction via images and 

patch level. Notwithstanding, there are chances where the input images analyzed for 

patch features fail to contain RIO, thus yielding false malignancy results as they might not 

adequately depict the input image. 

Research has proposed numerous convolutional neural network-based classification 

architectures for BHIs to extract features from the entire input image. This approach 
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mostly fails as the network might overlook the essential features. The identified proper-

ties/regions of the input images that might be overlooked are the cores, proliferative cells, 

and ducts, which are critical in determining the tumor’s malignancy. As a result, neglect-

ing certain traits may impact outcomes. Furthermore, extracting distinctive features at dif-

ferent magnifications is difficult due to the tiny size of cores. To address these constraints 

of multiclassification of BC using the BHI dataset, this article proposes “DEEP_Pachi,” an 

end-to-end deep learning model incorporating multiple self-attention network heads and 

Multilayer Perceptron. The input images are processed as a series of patches. Each patch 

is squished into a single feature vector by merging the layers of all pixels in a patch and 

then exponentially extending it to the appropriate input dimension. Even though the pro-

posed architectures require more training samples than CNN architectures, the most typ-

ical approach is to use a pre-trained network and then to finetune it on a smaller task 

sample. This paper used the option of pre-trained networks to mitigate the issues of more 

training sample requirements of the proposed model. To select the pre-trained networks, 

we first examine four pre-trained deep learning models (DensetNet201, VGG16, Incep-

tionResNetV2, and Xception network) on BHIs images using a transfer learning tech-

nique. Afterward, an ensemble of pre-trained models functioned as feature extractors for 

the DEEP_Pachi network. We propose an automated method to distinguish between be-

nign breast tumors such as Adenosis, Fibroadenoma, Phyllodes_tumor, and Tubular_ad-

enoma and malignant breast tumors Ductal_carcinoma, Lobular_Carcinoma, Mucin-

ous_Cancinoma, and Papillary_carcinoma to help medical diagnosis even when profes-

sional radiologists are not accessible. Furthermore, to provide a point of comparison for 

our findings, the proposed method is compared to other baseline models and recently 

published research. 

The significant contribution of this paper is summarized as follows: 

 This research reviews several Medical BC imaging techniques, their robustness and 

limitation, and associated public dataset. 

 This paper proposed a fine-tuned approach termed “DEEP_Pachi,” an end-to-end 

deep learning model incorporating multiple self-attention network heads and Multi-

layer Perceptron for the multiclassification of Breast cancer diseases using histo-

pathological images. 

 According to the comprehensive study via transfer learning experiment, the sug-

gested feature extractor discriminates remarkably between benign breast tumors 

such as Adenosis, Fibroadenoma, Phyllodes_tumor and Tubular_adenoma malig-

nant breast tumors Ductal_carcinoma, Lobular_Carcinoma, Mucinous_Cancinoma, 

and Papillary_carcinoma to help medical diagnosis even when professional radiolo-

gists are not accessible. 

 We reported a well robust deep learning method in Accuracy, Specificity, Sensitivity, 

Precision, F1 Score, Confusion matrix, and AUC using receiver operating character-

istics (ROC) for the multiclassification of Breast cancer diseases using histopatholog-

ical images based on the detailed experimental evaluation of the proposed model and 

comparison with state-of-the-art results. 

 Finally, this research suggests that the proposed model “DEEP_Pachi” can also be 

used to increase ensemble deep learning models’ detection and classification accura-

cies. 

The remainder of this article is organized as follows; Section 1 is devoted to the in-

troduction and relevant studies of this research. Section 2 outlines the materials, the pro-

posed approach, and the evaluation measures. Section 3 introduces the experimental 

setup and outcomes, whereas Section 4 explains the results. Section 5 discusses the con-

clusion and future studies. 
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2. Materials and Methods 

This section examines the suggested architecture and materials in depth. The imple-

mentation structure of this research is depicted in Figure 1. First, this paper argues that 

data preprocessing should only be applied to the training set because when test set data 

are preprocessed, there is every likelihood that the training model will perform poorly in 

real-time; thus, the first step in this paper was to split the dataset downloaded from the 

database. After splitting the dataset into train and test sets, data preparation procedures 

such as scaling, rotation, cropping, and normalization are performed in the train set. To 

make our model robust enough, transfer learning was used as the network backbone’s 

(feature extraction). While selecting the optimum network backbone for the proposed 

model, this paper conducted an experimental examination on four deep learning pre-

trained models. On the other hand, researchers have argued that ensemble models pro-

vide more generalized results than single models; hence, we adopted the ensemble archi-

tecture for the proposed network backbone. The ensemble network now serves as the in-

put to the proposed model (DEEP_Pach). The proposed model comprises a self-attention 

network and an MLP block, as seen in Figure 2. The self-attention network receives the 

input in two forms: patch embedding and position embedding. This helps the self-atten-

tion network differentiate between the various symptoms in the fed images. The multi-

layer perceptron (MLP) block improves the self-attention network’s outcomes in false 

symptom detection in the fed dataset. The input evaluated by the self-attention network 

is transferred to the multilayer perceptron layer for extraction before being passed to the 

classification/detection layer for prediction. We go over the following stages for putting 

our suggested approach into action. 

 

Figure 1. Proposed methodology block diagram. 
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Figure 2. Proposed model block diagram. (a) depicts the extraction of input image features via the 

backbone models (ensemble model). The Deep_Pachi networks accepts the extracted features in two 

scenarios (b) Patch embedding and (c) Position Embedding. (d) depicts DEEP_Pachi framework 

components which are the self-attention Network and MLP Layer. (e) depicts the testing stage with 

new images on the trained DEEP_Pachi Network. 

 Step 1: Data collection, splitting, and data preprocessing 

 Step 2: Backbone selection and Ensembling for more robust and generalized features. 

The examined models were DenseNet201, VGG16, Xception, and  

InceptionResNetV3 architecture. 

 Step 3: Feeding the extracted features from the ensemble model into DEEP_Pach ar-

chitecture. 

 Step 4: This is the last stage of the proposed model: the identification and classifica-

tion stage. The learned features are passed into the classification layer for the final 

result prediction. 

 Step 5: Then, evaluation with the test set is performed after training. 

2.1. Dataset 

BreaKHis, the broadest currently accessible dataset of BC histopathology images, 

was introduced by the authors of Ref. [4]. The dataset was obtained in brazil at the Patho-

logical Anatomy and Cytopathology (P&D) Lab. Eighty-two patients were diagonalized, 

generating Benign microscopic images (BI) and Malignant images (MI) in several magni-

fications. The BI is 2480 in number while MI is 5429, totaling 7909 images. The generated 

microscopic images magnification includes 40×, 100×, 200×, and 400×. Figure 3 shows the 

pictorial illustration of the BreaKHis dataset. It depicts the binary classification, Benign 

vs. Malignant, and each class’s subclass. The benign classes include the following adenosis 

(A), fibroadenoma (F), phyllodes_tumor (PT), and tubular_adenoma (TA), while the ma-

lignant classes include ductal_carcinoma (DC), lobular_carcinoma (LC), mucinous_carci-

noma (MC), and papillary_carcinoma (PC). Table 3 summarizes the distribution of the 

employed BreaKHis dataset. 
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Figure 3. Visualization of the BreaKHis dataset. 

Table 3. BreaKHis dataset. 

Class Sub_Class 
Magnification  

Total 
Nos_Pa-

tients 40× 100× 200× 400× 

Benign 

Adenosis 114 113 111 106 444 

24 
Fibroadenoma 253 260 264 237 1014 

Phyllodes_tumor 109 121 108 115 453 

Tubular_adenoma 149 150 140 130 569 

Malignant 

Ductal_carcinoma 864 903 896 788 3451 

58 
Lobular_carcinoma 156 170 163 137 626 

Mucinous_carcinoma 205 222 196 169 792 

Papillary_carcinoma 145 142 135 138 560 

Total  1995 2081 2013 1820 7090 82 

2.2. Data Pre-Processing/Augmentation 

The first step towards the employed dataset was to augment the data as the number 

of samples in each subclass varies. Moreover, it is worthy to note that deep learning mod-

els require a massive quantity of data to increase their performance or minimize the rate 

of misdetection and classification of the minority samples. Table 4 shows the type of data 

argumentation carried out in this paper. Augmentor is a Python library used by research-

ers to increase the number of samples. 

The Python Augmentor library was only used on a different Python script to generate 

the training samples as the original samples were kept for evaluation of the model. Sam-

ples numbering 1500were generated for training in each magnification for benign and ma-

lignant. The TensorFlow data loader function was used during training to augment the 

train set further. Images were rescaled (rescale operation indicates image magnification 

or reduction) using the 1./255 ratio: zoom range = 0.2, rotation range = 1, and horizontal 

flip = True. The rotation range specifies the span under which the images were spontane-

ously rotated throughout training. Zoom range dynamically zooms the images to a ratio 

of 0.2 percent, and the images were eventually flipped horizontally. 

  



Diagnostics 2022, 12, 1152 12 of 33 
 

 

Table 4. Data augmentation Python algorithm. 

Import Augmentor 

def upsample(dir, num_samples): 

p = Augmentor.Pipeline(dir) 

p.rotate(probability = 1, max_left_rotation = 5, max_right_rotation = 5) 

p.zoom(probability = 0.2, min_factor = 1.1, max_factor = 1.2) 

p.skew(probability = 0.2) 

p.shear(probability = 0.2, max_shear_left = 2, max_shear_right = 2) 

p.crop_random(probability = 0.5, percentage_area = 0.8) 

p.flip_random(probability = 0.2) 

p.sample(num_samples) 

p.random_distortion(probability = 1, grid_width = 4, grid_height = 4, magni-

tude = 8) 

p.flip_left_right(probability = 0.8) 

p.flip_top_bottom(probability = 0.3) 

p.rotate90(probability = 0.5) 

p.rotate270(probability = 0.5) 

src_dir = ‘D:/Pachigo/Breast_Cancer/Train/Benign/40 

src_dir = ‘D:/Pachigo/Breast_Cancer/Train/Benign/100 

src_dir = ‘D:/Pachigo/Breast_Cancer/Train/Benign/200 

src_dir = ‘D:/Pachigo/Breast_Cancer/Train/Benign/400 

upsample(src_dir, 1500) 

2.3. Network Backbone 

The proposed network backbone in this study is the ensemble of two deep-learning 

models via the transfer learning approach. Four deep learning pretrained models were 

first examined using the malignant subclass magnification of the BreaKHis dataset: the 

DenseNet201 and the VGG16 architecture produced a better classification performance 

among the four examined models. Hence, we used both as the network backbone via the 

ensemble approach. Ensembling is the capacity to combine several learning algorithms to 

obtain their collective performance, i.e., to improve the performance of existing models 

by integrating many models into a single trustworthy model. The network backbone 

serves as feature extractors to the proposed model DEEP_Pachi, as seen in Figure 4. 
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Figure 4. Proposed network backbone architecture. 

 VGG16 [96]: VGG16 consists of 16 layers. Following preprocessing, the captured val-

ues are fed into a stacked Convolutional layer with 3 × 3 receptive-field filters and a 

fixed stride of 1. Following that, five max-pooling convolutional layers are used to 

perform spatial pooling. A 2 × 2 filter’s max-pooling layer is run with a stride of 2. To 

finalize the design, two fully connected layers (FC) and SoftMax (for the output) are 

added at the end of the final convolution. 

 DenseNet201 [97]: This architecture assures information flow across network levels 

by linking each layer to each layer in a feed-forward fashion (with equal feature-map 

size). It concatenates (.) the previous layer’s output with the output of the next layer. 

The transition layers consist of a 1 × 1 convolution followed by a 2 × 2 average pool-

ing. Global pooling is utilized after the last dense block before applying SoftMax. 

Table 5 summarises the parameters of all implemented models in this article. 
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Table 5. Optimal parameters of all implemented models. 

Models 
Learning 

Rate 
Loss Function 

Trainable 

Parameter 

Non-Trainable 

Parameter 

Total  

Parameter 
Optimizers 

Nos. of 

Epochs 

DenseNet201 0.001 
Categorical smooth 

loss 
1,106,179 18,321,984 19,428,163 Adam Early stop 

VGG16 0.001 
Categorical smooth 

loss 
598,403 14,714,688 15,313,091 Adam Early stop 

InceptResNetV2 0.001 
Categorical smooth 

loss 
393,475 54,336,736 54,730,211 Adam Early stop 

Xception 0.001 
Categorical smooth 

loss 
1,179,907 20,861,480 22,041,387 Adam Early stop 

Ensemble 0.001 
Categorical smooth 

loss 
43,872,899 33,036,672 76,909,571 Adam Early stop 

DEEP_Pachi 0.001 
Categorical smooth 

loss 
766,291 33,036,848 33,803,139 Adam Early stop 

2.4. DEEP_Pachi Architecture 

The proposed architecture is based on an attention mechanism and multilinear per-

ceptron [98]. The attention mechanism is self-attention. The attention function is the map-

ping to an output of a set of keys, value pairs, and a query. The weights allocated to each 

value are determined by the query compatibility function with the relevant key, whereas 

the weighted sum of the values results in the output. Considering an input with dimen-

sion �� of queries and keys and dimension ��, the dot product of all the queries with 

keys are computed by dividing each with ���  while using SoftMax to ascertain the 

weights on the values. The attention matrix contains a set of queries Q, keys K, and values 

V, which are used to compute the attention function simultaneously. 

���������(�, �, �) = ������� �
���

���
� �  (1) 

Multi-head attention allows the model to simultaneously attend to inputs from sev-

eral representation subspaces at various locations. Figure 5 elaborates the computation 

performed by multi-head self-attention: 

���������(�, �, �) = ������(ℎ����, ⋯ , ℎ����)�� (2) 

where ℎ���� = �������������
�, ���

�, ���
�� 

The parameter matrices are projections ��
� ∈ ℝ������∗��, ��

� ∈ ℝ������∗��, ��
� ∈

ℝ������∗��, and �.
� ∈ ℝ���∗������. MLP is made up of two GELU non-linearity layers. 

�� = �������; ��
��; ��

��; ⋯ ; ��
��� + ����, � ∈ ℝ��� × �� × �, ���� ∈ ℝ(� � �)× �  (3) 

��
� = ������(�� � �)� + �� � �, � = 1 . . . . . � (4) 

�� = ������(���)� + ��
�, � = 1 … . �  (5) 

� = ��(��
�) (6) 
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. 

Figure 5. Visualization of DEEP_Pach architecture. 

The classification head is implemented with one hidden layer during pre-training 

(Equation (5)) and a single linear layer (Equation (6)) during finetuning by an MLP. This 

paper uses the SoftMax layer after the MLP Block to accurately detect a sample. The Soft-

Max layer’s primary function converts the encoding layer’s output information into a like-

lihood interval (0,1). We considered detection as a multi-classification issue in this study. 

After that, we send input samples to the encoding network, for which its outputs are then 

transferred into the likelihood interval (0, n) via the SoftMax layer, as seen in Equation (7): 

�� = �(��|��) =
1

1 + ��(��� � ��)
�(0, �) (7) 

where the weight matrix and the bias term are denoted as �� and ��, respectively. We 

used categorical_smooth_loss to calculate the loss between the ground truth and the de-

tected item. Categorical_smooth_loss is the addition of smoothing of the label’s functions 

to the cross-entropy loss function. 

2.5. Experimental Setup 

This experiment was performed using an Intel(R) Core (TM) i9-10850K CPU @ 

3.60GHz, 64.0GB RAM Desktop Computer, and an NVIDIA GEFORCE RTX-3080 Ti 10 

GB graphics processing unit (GPU). We use open-source libraries such as Keras and Ten-

sorFlow to implement this. The experimental parameters for all of the studies documented 

in this work remained consistent during training: reduce learning rate (factor of 0.2, epsi-

lon = 0.001, patience = 10, verbose = 1), es callback (early stopping, patience = 10), Adam 

optimizer, clip value of 0.2, and an epoch of 100. An epoch of 50 was utilized to select the 

pre-trained models, while all other parameters remained fixed as in the main experiment. 

In the encoder implementation, patch size = (2, 2), drop rate = 0.01 for all the layers, num-

ber of heads = 8, embed_dim = 64, num_mlp = 256, window size//2, and then the global 

average pooling for the shift size. 
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2.6. Evaluation 

The proposed model used various evaluation metrics to evaluate the robustness of 

the model. The metrics include Accuracy, Precision, Specificity, F1-score, Sensitivity, and 

area under a receiver operating characteristic curve (AUC). The predefined notations are 

TP = True Positive, FP = False Positive, TN = True Negative, and FN = False Negative. We 

defined classification Accuracy (ACC) as follows. 

��� =  
�� +  ��

(�� +  ��)  + (�� +  ��)
× 100 (8) 

Precision (PRE) is defined as follows. 

��� =  
��

�� +  ��
× 100 (9) 

Specificity (���) is defined as follows. 

��� =  
��

�
× 100 =  

��

�� + ��
× 100 (10) 

 Sensitivity (SEN) is mathematically formulated as follows. 

��� =  
��

�
× 100 =  

��

�� + ��
× 100 (11) 

The Precision and Sensitivity harmonic means are referred to as the �� �����, math-

ematically represented as thus. 

�� = �
�����  + �����

2
�

��

=
2 ×  ��

2 ×  �� +  �� +  ��
 (12) 

The AUC measures a classifier’s performance, while the probability curve is obtained 

from plotting at different threshold settings, the FP rate is referred to as the ROC (Receiver 

Operating Characteristic). The AUC indicates how well the model distinguishes between 

the given instances. The higher the AUC, the better. AUC = 1 implies a perfect classifier, 

whereas AUC = 0.5 suggests a classifier randomizing class observation. To determine the 

area under the ROC curve, AUC is calculated using trapezoidal integration. 

3. Results 

This section describes the results of the experiment. The parameter sensitivity exper-

iment was first presented in this section to guide readers on how the proposed model 

parameter was selected for optimal performance. The transfer learning, binary, and mul-

ticlass experimental results were discussed using the employed evaluation metrics and 

compared with the state-of-the-art results. 

3.1. Parameter Sensitivity Analysis of the Proposed Method 

This paper carried out a parameter sensitivity analysis of the optimal number of 

heads and feature extractors to ascertain the parameter setting for the proposed model’s 

best and worst performance scenario. The number of epochs and learning rate is kept con-

stant during this experiment. The evaluation metrics used here include accuracy, preci-

sion, and F1_score. The obtained result is recorded in Table 6. The computational cost was 

considered during the parameter sensitivity analysis; hence, only two, four, and eight 

numbers of self-attention heads and one, two, and three backbones were set up in the 

analysis. The backbone models used for this analysis were DenseNet201, VGG16, and 

Xception architecture. It was observed that using only one pre-trained network as the pro-

posed model backbone with different numbers of self-attention heads does not have any 

significant result enhancement; thus, we focused on using only two and three pre-trained 

networks for the optimal feature selection approach. The best accuracy, F-1 score, and 

precision were obtained when the number of self-attention network heads is set from four 



Diagnostics 2022, 12, 1152 17 of 33 
 

 

using two pre-trained networks. The optimal best parameter setting of the proposed 

model is seen while using three pre-trained models as network backbone and setting the 

number of self-attention heads = 16. Although there was a minimal difference from using 

two pre-trained models and four self-attention heads, this paper used two pretrained 

model backbones and set the number of self-attention heads to be eight in all experiments 

to reduce the computational cost of the proposed model. The malignant class of the 

BreaKHis dataset was used in this evaluation. We combined all the malignant magnifica-

tion subclasses into a binary classification task. We combined the 40× and the 100× mag-

nification for low-quality image resolution while combining 200× and 400× magnification 

for the high-quality image resolution. We used 80 percent for training and 20% for the test 

during this analysis. 

Table 6. Parameter sensitivity analysis of DEEP_Pachi. 

Nos. of  

Pre-Trained  

Network 

Nos. of  

Self-Atten-

tion Heads 

Learning 

Rate 

Nos. Of 

Epoch 

Accuracy 

(%) 

Precision 

(%) 

F1_Score 

(%) 

1 2 3 × 10−3 50 0.96 0.96 0.96 

2 2 3 × 10−3 50 0.96 0.97 0.96 

3 2 3 × 10−3 50 0.97 0.97 0.97 

1 4 3 × 10−3 50 0.96 0.97 0.96 

2 4 3 × 10−3 50 0.97 0.98 0.97 

3 4 3 × 10−3 50 0.98 0.97 0.97 

1 8 3 × 10−3 50 0.96 0.97 0.97 

2 8 3 × 10−3 50 0.97 0.99 0.98 

3 8 3 × 10−3 50 0.98 0.98 0.98 

1 16 3 × 10−3 50 0.98 0.98 0.98 

2 16 3 × 10−3 50 0.99 1.0 0.98 

3 16 3 × 10−3 50 1.0 0.98 0.99 

3.2. Transfer Learning Experiment for Backbone Network Selection 

Having first obtaining the optimal best performance using the number of self-atten-

tion networks and number of pre-trained models for the backbone, we carried out a de-

tailed experiment using both the Benign class and the Malignant class on various magni-

fications, as recorded in Table 7. From the recorded results, the transfer learning models 

performed very well in the benign class; hence, we focused our attention on the malignant 

class for backbone network selection. The excellent results of the models using the Benign 

class can be traced to the data preprocessing technique employed in this paper. The 

DenseNet201 architecture had the best result in all magnification (40×, 100×, 200×, and 

400×). By comparing the recorded results, the malignant class’s results in all magnifica-

tions are lower than the benign class. VGG16 results show how robust the model is on 

both low and high-image resolutions compared to the Xception model. However, they 

recorded almost the same results in this experiment. The InceptionResNet is the least per-

forming model; hence, DenseNet and the VGG16 were selected for the network backbone. 

Table 7. Transfer learning classification result. The experiment was performed specifically for the 

selection of the proposed model backbone. 

Models ACC (%) SEN (%) SPE (%) PRE (%) F1_Score (%) AUC (%) 

40× Magnification-Benign 

DenseNet201 1.0 1.0 1.0 1.0 1.0 1.0 

InceptionResNet 0.99 0.99 0.99 0.98 0.98 0.99 

VGG16 1.0 1.0 1.0 1.0 1.0 1.0 
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Xception 1.0 1.0 1.0 1.0 1.0 1.0 

100× Magnification-Benign 

DenseNet201 1.0 1.0 1.0 1.0 1.0 1.0 

InceptionResNet 1.0 1.0 1.0 1.0 1.0 1.0 

VGG16 0.99 0.99 0.99 0.98 0.98 0.99 

Xception 0.99 0.99 0.99 0.98 0.98 0.99 

200× Magnification-Benign 

DenseNet201 1.0 1.0 1.0 1.0 1.0 1.0 

InceptionResNet 0.99 0.98 0.99 0.99 0.98 0.98 

VGG16 1.0 1.0 1.0 1.0 1.0 1.0 

Xception 1.0 1.0 1.0 1.0 1.0 1.0 

400× Magnification Benign 

DenseNet201 1.0 1.0 1.0 1.0 1.0 1.0 

InceptionResNet 1.0 1.0 1.0 1.0 1.0 1.0 

VGG16 0.99 0.98 0.99 0.99 0.98 0.98 

Xception 0.99 0.98 0.99 0.99 0.98 0.98 

40× Magnification Malignant 

DenseNet201 0.98 0.99 0.99 0.95 0.97 0.99 

InceptionResNet 0.94 0.95 0.97 0.83 0.88 0.96 

VGG16 0.94 0.93 0.96 0.82 0.86 0.94 

Xception 0.94 0.93 0.96 0.82 0.86 0.94 

100× Magnification Malignant 

DenseNet201 0.97 0.98 0.98 0.91 0.94 0.98 

InceptionResNet 0.94 0.95 0.97 0.83 0.88 0.96 

VGG16 0.94 0.94 0.96 0.83 0.87 0.95 

Xception 0.96 0.96 0.97 0.86 0.90 0.97 

200× Magnification Malignant 

DenseNet201 0.98 0.97 0.98 0.94 0.95 0.98 

InceptionResNet 0.93 0.94 0.96 0.80 0.85 0.95 

VGG16 0.92 0.93 0.95 0.79 0.84 0.94 

Xception 0.95 0.95 0.97 0.85 0.89 0.96 

400× Magnification Malignant 

DenseNet201 0.98 0.98 0.98 0.92 0.95 0.98 

InceptionResNet 0.96 0.97 0.98 0.88 0.92 0.97 

VGG16 0.97 0.96 0.98 0.90 0.93 0.97 

Xception - - - - - - 
ACC denotes Accuracy; SEN = Sensitivity; SPE = Specificity; PRE = Precision; AUC = Area under the 

ROC Curve. 

3.3. DEEP_Pachi Architecture Classification Result 

For ideal and well-detailed microscopic image analysis, the magnification factor 

plays a significant role; hence, this paper experimented on all BreaKHis dataset magnifi-

cation (40×, 100×, 200×, and 400×). However, before then, a Binary classification was car-

ried out on the BreaKHis dataset combing all 100× and 400× magnifications for the benign 

and malignant class. The reason behind selecting only the 100× and the 400× magnification 

was to analyze the robustness of the model in low and high-quality image resolution and 

have a neutral experiment without data augmentation. The binary classification is shown 

in Table 8. The evaluation was between the backbone network, the Ensemble of DenseNet 
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architecture and VGG16 and the DEEP_Pachi model (Proposed model). We can see a sig-

nificant contribution of the proposed model with 0.1% improvements in the Benign class 

and +0.1–+0.3% improvements in the Malignant class. Figure 6 visualizes the class perfor-

mance of each model using the Precision–Recall curve and the Reciever Operating Char-

acteristics (ROC) Curve. 

Table 8. Binary classification using DEEP_Pachi. 

Models ACC (%) SEN (%) SPE (%) PRE (%) F1_Score AUC 

100× Magnification 

Backbone Net-

work 
0.99 0.99 0.99 0.99 0.99 0.99 

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0 

400× Magnification 

Network Back-

bone 
0.95 0.93 0.93 0.95 0.94 0.93 

DEEP_Pachi 0.96 0.96 0.96 0.97 0.95 0.96 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. Binary Classification between Benign and Malignant. (a) depicts the PR Curve using the 

100×, (b) depicts PR Curve @400× (c) depicts ROC curve @ 100×, and (d) depicts ROC curve @ 400×. 

Table 9 depicts the multiclass classification of the BreaKHis dataset. Since the Benign 

class has described excellent results due to the ideal preprocessing techniques used in this 
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paper, we focused our discussion more on the Malignant class. Comparing the network 

backbone classification performance using the Accuracy, Sensitivity, Specificity, Preci-

sion, F1-score and AUC evaluation metrics, the DEEP_Pachi architecture significantly im-

proved by +0.1–+0.3% classification performance. Figure 7 visualized the Benign individ-

ual class performance using the Precision-Recall (PR) curve and the Reciever Operating 

Characteristics (ROC) Curve while Figure 8 visualized the Benign individual class perfor-

mance using the Precision-Recall (PR) curve and the Reciever Operating Characteristics 

(ROC) Curve. 

Table 9. Multiclass classification using DEEP_Pachi vs. the network backbone. 

Models ACC (%) SEN (%) SPE (%) PRE (%) F1_Score (%) AUC (%) 

40× Magnification-Benign 

Network Backbone 1.0 1.0 1.0 1.0 1.0 1.0 

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0 

100× Magnification-Benign 

Network Backbone 1.0 1.0 1.0 1.0 1.0 1.0 

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0 

200× Magnification-Benign 

Network Backbone 1.0 1.0 1.0 1.0 1.0 1.0 

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0 

400× Magnification Benign 

Network Backbone 1.0 1.0 1.0 1.0 1.0 1.0 

DEEP_Pachi 1.0 1.0 1.0 1.0 1.0 1.0 

40× Magnification Malignant 

Network Backbone 0.97 0.98 0.98 0.92 0.94 0.98 

DEEP_Pachi 0.99 1.0 1.0 0.96 0.98 0.98 

100× Magnification Malignant 

Network Backbone 0.97 0.98 0.98 0.91 0.94 0.98 

DEEP_Pachi 0.99 1.0 1.0 0.94 0.98 0.98 

200× Magnification Malignant 

Network Backbone 0.96 0.96 0.98 0.90 0.92 0.97 

DEEP_Pachi 0.99 0.99 0.99 0.95 0.98 0.98 

400× Magnification Malignant 

Network Backbone 0.98 0.98 0.98 0.92 0.95 0.98 

DEEP_Pachi 1.0 1.0 1.0 0.97 0.99 0.99 

 

 
  

(a) (b) (c) 
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(d) (e) (f) 

  

(g) (h) 

Figure 7. Benign individual class performance using Receiver Operating Characteristics (ROC) 

Curve and Precision–Recall (PR) Curve. (a) depicts the PR Curve @40×, (b) depicts PR Curve @100× 

(c) depicts PR Curve @ 200×, (d) depicts PR Curve @ 400×, (e) depicts ROC curve @ 40×, (f) depicts 

ROC curve @ 100×, (g) depicts ROC curve @ 200×, and (h) depicts ROC curve @ 400×. 

   

(a) (b) (c) 
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(d) (e) (f) 

  

(g) (h) 

Figure 8. Malignant Multiclass Classification. (a) depicts the PR Curve @40×, (b) depicts PR Curve 

@100×, (c) depicts PR Curve @ 200×, (d) depicts PR Curve @ 400×, € depicts ROC curve @ 40×, (f) 

depicts ROC curve @ 100×, (g) depicts ROC curve @ 200×, and (h) depicts ROC curve @ 400×. 

4. Discussion 

Table 9 shows the multiclass classification performance of the proposed model vs. 

the backbone model (Ensemble model). Using the Precision–Recall (PR) curve and the Re-

ceiver Operating Characteristics (ROC) Curve as shown in Figure 8, the individual per-

formances of Malignant Ductal_carcinoma, Lobular_Carcinoma, Mucinous_Cancinoma, 

and Papillary_carcinoma were recorded. Table 9 reveals that DEEP_Pachi classification 

accuracy is substantially higher than that of the Backbone model, which is four classes, 

with greater accuracy of at least 0.3%. These findings demonstrate that the DEEP_Pachi 

models significantly enhanced the accuracy of the BC classifier. These models can capture 

more essential tumor cell properties than traditional DL architectures. Conventional DL 

models comprised shallow convolution layers, which were insufficient for extracting the 

unique properties of BC cells, and this was a difficult task due to the significant variations 

of H&E staining. DEEP_Pachi models, on the other hand, can capture comprehensive in-

formation from breast types of cells, indicating the similarity of BC cells to normal breast 

cells. An intense network was used as our network backbone, which was critical for re-

taining the inherent ordering of items. In backbone models, low-level characteristics were 

recorded, and object pieces were retrieved at higher levels. Furthermore, the attention 

mechanism raises feature levels, resulting in better classification performance. 

Figure 7 shows the ROC and the PR curve of the benign multiclass classification while 

Figure 8 shows malignant multiclass classification. The mucinous carcinoma and the pa-

pillary carcinoma attend the highest area and AP in the malignant class, whereas lobular 

carcinoma recorded the lowest AP and Area. Table 9 shows that when the results of the 
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DEEP_Pachi architecture are compared to the state-of-the-art results, the backbone model 

alone achieves a higher accuracy for the multiclassification task. The accuracy of the back-

bone model alone was at least 3% greater than any of the state-of-the-art models. This 

demonstrates that this model can use the deep network architecture of multi-resolution 

input images to collect multi-scale relevant information and the benefits of its single mod-

els. The DEEP_Pachi model outperforms the multiclass classification by a margin for bi-

nary classification. This is because the various classes are not dissimilar and share many 

characteristics. The findings show that the backbone model outperformed the other algo-

rithms in the binary classification task, with a total accuracy of 99%. Table 9 also shows 

the backbone model’s sensitivity, Sensitivity, Precision, F1-Score, and AUC vs. the 

DEEP_Pachi. Because our model can capture multi-level and multi-scale data and distin-

guish individual nucleus features and hierarchical organization, the DEEP_Pachi per-

formed well. DEEP_Pachi may also learn features at multiple sizes through its convolu-

tional layers. As a result, it can accurately distinguish individual nuclei and nuclei struc-

tures. The experimental findings reveal that the ensemble technique outperforms all other 

approaches, achieving gains of at least 0.2–0.8% for images at 40×, 100×, 200×, and 400× 

magnification due to its capacity to collect multi-scale contextual information. DEEP_Pa-

chi demonstrates that features derived from cross image inputs and then merged into a 

boosting framework outperform standard deep learning architectures in object classifica-

tion tests. This also indicates that our enhancing approach exceeds deep learning net-

works when dealing with few training data samples. 

4.1. Visualization the Influence of DEEP_Pachi Framework 

To evaluate the influence of patches and embedding in the DEEP_Pachi model, an 

experiment was carried out utilizing the malignant image with 200× magnification as 

shown in Figure 9. The input image (a) was first split into patches as shown in (b) before 

the positional embedding (c) is added. By combining the pixel layers in a patch and then 

immensely extending it to the suitable input dimension, each patch is squeezed into a 

vector representation. Positional embedding (c) demonstrates how the model under-

stands when to encrypt distance within the input image in the comparability of position 

embeddings, i.e., relatively close patches have much more position similar embeddings. 

The reason for the patches and the learnable embeddings is to treat each patch separately 

for an accurate feature extraction. The positional embedding helps the model to know 

where each patch was at the initial input during the output. The patches are first converted 

using 2D learnable convolutions. Furthermore, to analyze the impact of the patch and em-

bedding combination, (d) validates the envisaged approach’s efficacy in improving pro-

spective ROIs; this enalbes the model in efficiently and successfully concentrating on these 

areas and for determining the cancer. 

   

(a) (b) (c) (d) 

Figure 9. the visualization of the implementation steps of the DEEP_Pachi model. (a) depicts the 

input image, (b) the input image patches, (c) learnable position embedding of the input image 

patches, and (d) attention matrix. 
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Figure 9d shows how the self-attention heads enable DEEP_Pachi to generalize 

across the input frame, even within the minimum layers. According to the diagram, the 

total distance in input images in which relevant data are assimilated is comparable to re-

ceptive scale factor in CNNs and is highly recognized in our model due to our network 

backbone, which is an ensemble of DenseNet201 and VGG16; thus, we observed continu-

ously small attention scales in small layers. Implementing the DEEP_Pachi model without 

a network backbone, i.e., generating features from scratch, causes the attention heads to 

focus on the majority of the image in the lowest layers, demonstrating that the model’s 

potential to consolidate information globally really is used. Furthermore, as the network 

depth increases, so does attention proximity. We discover that the model focuses on visual 

features that are semantic information significant for classification, as depicted in Figure 

10. 

 

Figure 10. The visualization of the implemented DEEP_Pachi Attention. 

4.2. Comparison with the State-of-the-Art Results 

This section discusses the proposed model results vs. the state-of-the-art results. The 

result is illustrated in Table 10. The state-of-the-art models can be seen in two ap-

proaches—single models and ensemble models. Ensemble modeling is the most general 

approach, as seen in Table 10. Refs. [98,99] experimented with several deep learning mod-

els as feature extractors while using conventional machine learning algorithms (SVM and 

LR) as classifiers. However, the results were not as promising as the recorded results are 

below 90%. Among well-known Deep learning models, DenseNet and Xception architec-

tures are preferred over the other models. They tend to yield classification accuracies 

above 90%, as recorded in Refs. [77,100,101] suggested that extracting breast cancer fea-

tures using different feature extractors boosts models’ classification performance. They 

employed the Shearlet-based features extractor and histogram-based features extractor. 

For their final models, they concatenated the output features and achieved better perfor-

mance compared to single feature extractors. They performed a +5–8% accuracy improve-

ment in all magnifications of the BreaKHis dataset Ref [102], although the result is not 

promising, and using Data augmentation for better performance is suggested. They car-

ried out a binary classification of the BreaKHis dataset and a multiclass classification using 

400x magnification. Among their employed data augmentation techniques, GAN-based 

DA yielded 77.3% accuracy for binary classification while yielding 78.5% multiclass clas-
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sification performance. Comparing the performance of the inception models, Incep-

tion_V3 and Inception_ResNet_V2 [93] produced a better performance as they extracted 

more relevant information by running convolution operations with varied regions of in-

terest concurrently. The use of transfer learning is more evident in binary classification. 

The authors of Refs. [103–107] based their work on binary classification by combining the 

subclasses of the benign and the malignant. VGG is seen to be often used for feature ex-

traction as it has deeper layers able to identify conceptual features. Comparing our pro-

posed model DEEP_Pachi, which is a modification of the vison transformer self-attention 

heads computation techniques, ensemble models, and a classification layer using the Mul-

tilinear perceptron block, we argue that extracting increased breast cancer features re-

quires an accurate vision system and, hence, and attention mechanism to focus on the 

region of the disease instead of extracting entire image features. Refs. [108–111] proposed 

an accurate and more unique approach for breast cancer classification. Ref. [108] em-

ployed the use of multi-view attention mechanism. Ref [109] proposed the deep attention 

high order network, while Ref [110] proposed using a different branch of CNN for more 

feature generation. Ref [111] proposed a three-channel feature low dimension model. All 

these approaches were in line with better breast cancer feature extraction; thus, they 

achieved the highest classification performance with +95% classification accuracy on all 

magnifications of BreaKHis (40×, 100×, 200×, and 400× magnification). In line with the cur-

rent state-of-the-art results, our model achieved an accuracy of 99% for all magnifications 

except 400%, where we achieved an accuracy of 1.0%. Our analyses demonstrate that our 

proposed models significantly enhanced the efficiency of the BC classifier. Our models 

can extract more critical breast cell features than CNN. CNN was made up of four thin 

convolution layers, which were insufficient for extracting unique properties of BC tumors, 

which was a difficult task due to the large variation of H&E smears. 

Table 10. Result comparison with the state-of-the-art result using the BreaKHis Dataset. 

Ref/Year Approach Data Type 
Classification 

Type 

Accuracy (%) 

40× 100× 200× 400× Binary 

[112] 2018 Ensemble (CNN + LSTM) BreaKHis  88.7 85.3 88.6 88.4  

[113] 2018 DenseNet CNN BreaKHis  93.6 97.4 95.9 94.7  

[77] 2018 Xception BreaKHis  95.3 93.4 93.1 91.7  

[114] 2018 
KAZE features + Bag of Fea-

tures 
BreaKHis  85.9 80.4 78.1 71.1  

[102] 2019 

CNN 

BreaKHis  

    77.2 

CNN + DA     76.7 

CGANs based DA     77.3 

DA + CGANs based DA     75.2 

CNN    75.4  

CNN + DA    75.9  

CGANs based DA    78.5  

DA + CGANs based DA    78.7  

[115] 2019 Deep ResNet + CBAM BreaKHis  91.2 91.7 92.6 88.9  

[103] 2019 
Transfer Learning (VGG16 + 

VGG19 + CNN) 
  

98.2 98.3 98.2 97.5  

    98.1 

[116] 2019 IRRCNN BreaKHis  98.0 97.6 97.3 97.4  

[85] 2019 

Inception_V3 

BreaKHis 

Multiclass 90.3 85.4 84.0 82.1  

Binary 97.7 94.2 87.2 96.7  

Inception_ResNet_V2 
Multiclass 98.4 98.7 97.9 97.4  

Binary 99.9 99.9 1.0 99.9  
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[80] 2019 
BHCNet-6 + ERF 

BreaKHis 
Multiclass 94.4 94.5 92.3 91.1  

CNN +SE-ResNet Binary 98.9 99.0 99.3 99.0  

[117] 2020 Deep CNN BreaKHis  73.4 76.8 83.2 75.8  

[94] 2020 

VGG16 + SVM 

(Balanced + DA) 

BreaKHis 

 94.0 92.9 91.2 91.8  

Ensemble (VGG16 + VGG19 + 

ResNet 50) + RF Classifier 
 90.3 90.1 87.4 86.6  

Ensemble (VGG16 + VGG19 + 

ResNet 50) + SVM Classifier 
 82.2 87.6 86.5 83.0  

[78] 2020 
ResHist (RL Based 152-layer 

CNN) 
BreaKHis  86.4 87.3 91.4 86.3  

[64] 2020 
VGGNET16-RF 

BreaKHis  
92.2 93.4 95.2 92.8  

VGGNET16-SVM 94.1 95.1 97.0 93.4  

[118] 2020 
CNN + spectral–spatial fea-

tures 
BreaKHis Malignant 97.6 97.4 97.3 97.0  

[100] 2020 NucTraL+BCF BreaKHis      96.9 

[119] 2020 ResNet50 + KWE LM BreaKHis Malignant 88.4 87.1 90.0 84.1  

[93] 2020 

AlexNet + SVM 

BreaKHis  

84.1 87.5 89.4 85.2  

VGG16 + SVM 86.4 87.8 86.8 84.4  

VGG19+SVM 86.6 88.1 85.8 81.7  

GoogleNet + SVM 81.0 84.5 82.5 79.8  

ResNet18 + SVM 84.0 84.3 82.5 79.8  

ResNet50 + SVM 87.7 87.8 90.1 83.7  

ResNet101 + SVM 86.4 88.9 90.1 83.2  

ResNetInceptionV2 + SVM 86.3 86.3 87.1 81.4  

InceptionV3 + SVM 85.8 84.7 86.8 82.9  

SqueezeNet + SVM 81.2 83.7 84.2 77.5  

[120] 2020 Optimized CNN BreaKHis  80.8 76.6 79.9 74.2  

[110] 2020 InceptionV3 + BCNNs BreaKHis  
95.7 94.7 94.8 94.5  

    96.1 

[105] 2020 

VGG16 + SVM 

BreaKHis  

78.6 85.2 82.0 79.6  

VGG19 + SVM 77.3 79.1 83.0 79.1  

Xception + SVM 81.6 82.9 78.4 76.1  

ResNet50 + SVM 86.4 86.0 84.3 82.9  

VGG16 + LR 78.8 85.2 81.2 79.1  

VGG19 + LR 77.6 82.4 82.2 77.8  

Xception + LR 82.4 79.6 79.4 83.1  

ResNet50 + LR 83.1 86.7 84.0 80.1  

[107] 2020 

Shearlet-based features 

BreaKHis  

89.4 88.0 86.0 83.0  

Histogram-based features. 92.6 93.9 95.0 94.7  

Concatenating all features 98.2 97.2 97.8 97.3  

[104] 2021 MA-MIDN BreaKHis  96.3 95.7 97.0 95.4  

[108] 2021 
AhoNet (Resnet18 + ECA + 

MPN-COV) 
BreaKHis  97.5 97.3 99.2 97.1  

[109] 2021 3PCNNB-Net BreaKHis  92.3 93.1 97.0 92.1  

[121] 2021 APVEC BreaKHis  92.1 90.2 95.0 92.8  
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[111] 2021 
Stochastic Dilated Residual 

Ghost Model 
BreaKHis  98.4 98.4 96.3 97.4  

[105] 2021 
Transfer Learning via Fine-

tuning Strategy 
BreaKHis  

99.3 99.0 98.1 98.8  

    98.4 

[122] 2021 BCHisto-Net BreaKHis 100× Magnification     89 

Ours DEEP_Pachi BreaKHis  99.8 99.8 99.8 1.0 99.8 

The proposed model was also evaluated using the ICIAR 2018 breast cancer Histol-

ogy images used for the BACH Grand challenge [123]. This dataset has 400 images while 

having 100 images per class. The classes of the dataset are Normal, Benign, In situ carci-

noma, and Invasive carcinoma. This paper first augmented the dataset following the same 

principle of augmentation used for the BreaKHis data implemented. Table 11 summarizes 

the result attend with that of the state-of-art results. The use of the ensemble model is very 

evident in the compared models. Our proposed model supersedes the accuracy of the 

compared models, showing our model’s superiority. 

Table 11. Result comparison with the state-of-the-art result using the ICIAR 2018 Dataset. 

Ref/Year Approach Data Type 
Accuracy 

(%) 

[18] 2018 DCNN + SVM BACH 77.8 

[123] 2018 Pre-trained VGG-16 BACH 83.0 

 Ensemble of three DCNNs  87.0 

[124] 2018 
Ensemble (DenseNet 169 + Denseness 201 + 

ResNet 34) 
BACH 90.0 

[20] 2019 All Patches in One Decision BACH 
90% 

92.5 

[125] 2019 
Ensemble (DenseNet 161+ ResNet 152 + Res-

Net 101) 
BACH 91.8 

[126] 2020 

Hybrid Features + SVM 

BACH 

92.2 

Hybrid Features + MLP 85.2 

Hybrid Features + RF 80.2 

Hybrid Features + XGBoost 82.7 

[87] 2020 Attention Guided CNN BACH 93.0 

[99] 2020 

Random Forest 

BACH 

91.2 

SVM 95.0 

XGBoost 42.5 

MLP 91.0 

[104] 2021 MA-MIDN BACH 93.57 

[108] 2021 AhoNet (Resnet18 + ECA + MPN-COV) BACH 85.0 

[101] 2021 Inception V3 + XGBoost BACH 87.0 

[127] 2022 DSAGu-CNN BACH  96.47 

Ours DEEP_Pachi BACH 99.9 

5. Conclusions 

To tackle the extraction of irrelevant features by conventional deep learning models, 

which results in the model’s misclassification and prediction, this paper proposed the 

DEEP_Pachi framework based on ensemble model, multiple self-attention heads, and 

multilinear perceptron for an accurate breast cancer histological image classification. First, 
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a thorough review of medical image modalities for breast cancer classification was carried 

out with the related open access datasets. Secondly, we applied the Python augmentation 

library to address the issues of limited raining data samples. The Python Augmentor was 

used to generate the training image samples while utilizing the original image for testing. 

The proposed model utilizes ensemble model (Densenet201 and VGG16) as the network 

backbone for a more generalized feature extraction of the input images (global features), 

whereas multiple self-attention heads extract spatial information (regions of interest). The 

superiority of the proposed model was evaluated using two publicly available databases, 

BreakHis and ICIAR2018, and using various evaluations metrics, and the result obtained 

show that the proposed DEEP_Pachi outperforms the state-of-the-art results in histo-

pathological breast cancer image classification. The suggested technique achieved an ac-

curacy of 1.0 for the benign class and 0.99 for the malignant class in all magnifications of 

the BreakHis datasets and an accuracy of 0.99 on the ICIAR 2018 Challenge dataset. 

As much as the proposed framework exhibit high classification accuracy, there is still 

room to evaluate DEEP_Pachi using other data augmentation techniques. Future work 

will see the exploration of various data augmentation techniques such as GAN for increas-

ing training samples. We also intend on extending the DEEP_Pachi framework to other 

disease classification using histopathological or microscopic images such as Oral cancer, 

Skin Cancer, etc. On the other hand, this paper will investigate the replacement of the 

MLP Block with SGTM neural-like structures to evaluate the possible best approach in 

our model. 
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