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01 Background
Importances:
• Dietary Management 

• Tracking nutritional intake
• Managing food-related health issues

• Food Safety

• Ensures food quality and safety through non-destructive 
evaluation methods [1]

Challenges:

• Traditional food assessment techniques are 
time-consuming and laborious [1]

• High intra-class difference and inter-class 
similarity [2]



01 Background
Solution - Using CNN

• Advanced architectures: ResNet, MobileNetV2, and 

InceptionV3

• Techniques: transfer learning and ensemble learning, etc

Aim:

• Accurate food image recognition system

• A user-friendly GUI



01 Background
Objectives:
• Evaluate the performance

• Combine multiple models

• Evaluate the model and demonstrate its interpretability

• Create a GUI for food image classification
Audiences:
• Individuals Seeking Healthier Eating Habits

• Organizations in the Agriculture and Food 
Supply Chain

• Scientific and Academic Communities

• Government and Food Regulatory Authorities



02 Dataset

01 02

03 04

Dataset
• Food-101 Subset:

• 5000 images across 5 categories
• 1000 images per category

Figure 1: Visualize Images of The Dataset

Figure 2: Number of Testsets and Trainsets in Each Category

Data Splitting
• 80% for training, 20% for testing and validation

Resizing & Normalization
• Training Input Size: 299x299x3
• Testing Input Size: Resize to 320, 

CenterCrop to 299x299
• Normalization:

• Means: [0.485, 0.456, 0.406]
• Stds: [0.229, 0.224, 0.225]

Data Augmentation:
• RandomHorizontalFlip
• RandomRotation: ±30°
• ColorJitter

Figure 3: Preprocessed Images and Original Images



03 Methodology
Transfer Learning:
• Using Pre-trained Models

• ResNet18, MobileNetV2, InceptionV3
• Adapt models pre-trained to the Food-101 subset
• Evaluate models

Ensemble Learing:
• Strategy - Weighted Averaging

• Calculating weights for each model
• Integrate models based on weights
• Assess the combined performance of the ensemble 

model

Figure 4: Model Performance and Weights



03 Methodology
Ensemble Model Details:
• Does not have a unified network hierarchy

• Combine the outputs of ResNet, MobileNetV2, 
and InceptionV3

• Weighted averaging based on the performance 
metrics of each individual model

• The integrated features are processed through 
the output layer Figure 5: Architecture Structure



03 Methodology
Early Stopping:

• Monitor validation loss during training

• Stop training when validation loss does not improve

• Enhances generalization and reduces overfitting

Learning Rate Scheduler:

• Dynamically adjust the learning rate

• Improves convergence speed and training efficiency

• Improves overall model performance



03 Methodology
Tools:

Table 1: The Technologies of The Project



04 Experiments & Results

Figure 6: Loss and Accuracy of MobileNetV2 Figure 7: Loss and Accuracy of ResNet

Figure 8: Loss and Accuracy of InceptionV3 Figure 9: Loss and Accuracy of Ensemble Model



04 Experiments & Results

Figure 13: Loss and Accuracy of the Learning Rate Scheduler

Figure 10: Loss and Accuracy of 0.01 Learning Rate Figure 11: Loss and Accuracy of 0.001 Learning Rate

Figure 12: Loss and Accuracy of 0.0001 Learning Rate



04 Experiments & Results

Figure 14: ROC Curve Diagram Figure 15: Precision-Recall Curve Diagram

• The AUC values of all categories in the ROC curve and Precision Recall curve diagram are 
close to 1.0

• The integrated model has excellent classification performance and strong predictive ability.



04 Experiments & Results

Figure 16: Confusion Matrix

Table 2: Evaluation Indicators of Single Class

• The confusion matrix shows a high degree of diagonal concentration

• The evaluation table showcases strong performance across all classes



04 Experiments & Results

Figure 18: LIME Analysis Map

Figure 19: SHAP values

Figure 17: Grad-CAM Heatmap

• Grad-CAM - Visualizes areas of significance 
in image-based models [2]

• LIME - Offers insights into model predictions 
by approximating the vicinity of data points [3]

• SHAP - Quantifies feature contributions to 
predictions [3]
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05 Reflections & Conclusion
Key Findings
• High Accuracy

• Achieved mainly by ensemble learning and learning rate scheduler 
• Model Efficiency - MobileNetV2

Challenges and Limitations
• Small Dataset:

• Limits generalization capability.
• Computational Resources:

• High computational cost for ensemble models

Future Work
• Expanding Dataset:

• Include more food categories
• Improved Models:

• Explore lightweight CNN architectures





06 Q&A

Any questions?
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