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Introduction to Image
Super-Resolution




Definition

Definition and Background

Super-resolution (SR) technology is a set of techniques used to enhance the resolution of an
image beyond the capabilities of the original imaging system. This process involves reconstructing
a high-resolution (HR) image from one or more low-resolution (LR) images. SR techniques can
increase the number of pixels and improve the level of detail, making the image sharper and

clearer.
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Methodology
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The Mish activation function is smooth and non-saturating, providing better
gradient flow and convergence.

PRELU has strong adaptability, effectively mitigating the vanishing gradient
problem through learnable parameters but increasing model complexity.




SRResNet Architecture and Attention Mechanisms
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Super-resolution network model Techniques to enhance image detail

quality



Model Structure
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Datasets Used for Training and Testing
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Training
Datasets
COCO14, or Common
Objects in Context, is a
large-scale dataset
containing over 200,000
labeled images of

everyday scenes.

Testing

Datasets
Set 5, Small dataset for
benchmarking SR
| algorithms.

- Set14, Widely wused for

evaluating SR techniques.
BSDS100,Part of the
Berkeley Segmentation

Dataset.



Evaluating and Optimizing Performance

Objective metrics (PSNR, SSIM, MSE).

Performance
Evaluation
Methods

Adjust model parameters and

structure.

~ Performance
2 Optimization
Strategies
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Results



Metrics: PSNR
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Metrics: PSNR
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Metrics: MSE
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Best Parameter
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Attention Map

Original HR Attention Map

The Attention Map highlights the areas of the image where the model
focuses to improve resolution.

It shows which parts of the image the model gives more "attention" to,
enhancing the finer details and textures.



Difference Map

Original HR

Bicubic Diff

SRResNet Diff

A difference map visually represents the pixel-by-pixel differences between two images.
Compared to the bicubic difference map, the SRResNet difference map should have fewer

noticeable differences, indicating better performance in preserving the details of the original
image.



Spectral Analysis

..

The spectral analysis reveals that SRResNet significantly outperforms bicubic interpolation
in image super-resolution. While bicubic interpolation fails to adequately recover high-
frequency details, resulting in a blurrier image, SRResNet successfully preserves both low
and high-frequency components, closely matching the high-resolution original. This
demonstrates SRResNet's superior ability to maintain image details and textures,
producing clearer and more detailed super-resolved images.



GUI Interface
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GUI Interface
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Conclusion



Conclusion

The super-resolution model faced challenges in balancing resolution
enhancement and artifact risk, generating higher noise levels while
improving details, and struggling with high computational demands and
complex patterns. Despite these, it outperformed bicubic interpolation in
clarity and detail, achieving high PSNR values across datasets like Set5,
Set14, and BSD100. Evaluations with MSE, SSIM, and PSNR metrics
showed significant advantages. Attention and difference maps
highlighted the model's focus on detailed regions, though SSIM scores
indicated room for improvement. Spectral analysis showed proficiency in
low-frequency detail recovery but challenges with high-frequency noise.






