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>> Background & Introduction 

20-year PV growth rate(%), 2001-

2019 

Global PV growth 

• Global PV Growth Challenge 

• 720 TWh generated in 2019 

(22% increase) 

• Cloud shadows cause up to 

80% power drop 

• Grid stability issues from 

intermittency 

• Need for accurate short-term 

forecasting 



1.Numerical 

Weather 

Prediction 

(6+ hours) 

 2. Physical 

models fail 

on complex 

patterns  

3.-Limited 

accuracy for 

5-30 minute 

horizon 

Traditional 

Forecasting 

Limitations:  

>> Background & Introduction 

Deep Learning 

Solution:  

1.CNN-LSTM 

Hybrid 

Architecture  

2.Attention 

Mechanism  

3.Sky Image 

Analysis 

 



>> Research Objectives 

• Develop CNN-LSTM hybrid model for cloud 

shadow mapping  

• Achieve accurate short-term (5-30 min) solar 

irradiance prediction  

• Implement attention mechanism for improved 

feature extraction  

• Create web-based deployment for real-time 

forecasting  

• Enhance grid stability and renewable energy 

integration 



>> Dataset & Methodology 

Wollongong Dataset:  

• 3 locations at University of 

Wollongong, Australia  

• Sky images (1024×768 pixels)  

• 10-second intervals, 8:00 AM 

- 4:45 PM  

• Paired with PV power 

measurements 

Data Split: 
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>> Proposed Model Architecture 

Key Components: 

• MobileNet: Efficient spatial feature 

extraction  

• LSTM: Temporal sequence modeling 

- Attention: Focus on relevant cloud 

features  

• Batch Normalization: Training 

stability 



>> Model Architecture Details 

MobileNet Features:  

- Input: 256×256×3  

- Output: 8×8×1280 feature maps  

- Depthwise separable convolutions 

LSTM Configuration:  

- 64 hidden units  

- Dropout: 0.3  

- Sequence length: 10 frames 

Attention Mechanism: 

-    Custom attention 

layer  

- Context vector 

computation  

- Region-based 

weighting 



>> Training Process 

Optimization:  

- Adam optimizer 

(lr=0.001)  

- MSE loss function  

- Early stopping 

(patience=15)  

- Learning rate reduction 

Regularization:  

- Dropout layers (0.3)  

- Batch normalization  

-  Data augmentation  

-  L2 regularization 



>> Results of the Proposed Model 

Model MAE 

Validation MAE = 0.0032 

Model Loss 
Validation Loss = 0.0869 Feature dimension 

Performance Metrics:  

- MSE: 0.0032  

- MAE: 0.042  

- MAPE: 17.48%  

- RMSE: 0.0565  

- R²: 0.992 



>> Results of the Proposed Model (cont’d) 

R𝟐=0.992, Pearson=0.996 



>> Comparison Analysis of the Proposed Model 

Comparison Analysis with Previous Work 

Model MSE MAE MAPE 

CNN 0.0189 0.6109 314.19% 

LSTM 0.0428 1.0986 438.62% 

CNN-LSTM 0.0057 0.0639 28.75% 

Proposed Model 0.0032 0.042 17.48% 



>> Comparison Analysis of the Proposed Model (cont’d) 
Model MSE MAE MAPE RMSE R² 

Proposed model 

 
0.0032 0.042 17.48% 0.0565 0.992 

CNN-LSTM (without 
attention) 

0.0057 0.0639 28.75% - - 

5-layer CNN-LSTM  5 层 
CNN-LSTM[1] 

0.006897 0.05193 - 0.08304 - 

CNN-LSTM[2] - - - 0.07  0.92 

CNN-LSTM-RF[3] - 0.05  - 0.07  0.92 

CNN-SLSTM 
(optimized)[4]   

- - 5.4315% 6.4124% 0.9348 



>> Web Application Deployment 

Image Uploading Zone Uploading 



>> Key Contributions 

Novel CNN-LSTM hybrid architecture with 

attention mechanism  

Achieved 80%+ improvement over 

standalone models  

Successful deployment for real-time 

forecasting  

Contribution to renewable energy 

integration 

Open-source implementation available 



>> Conclusion 

• Successfully developed hybrid 

deep learning model  

• Achieved high accuracy (R² = 

0.992)  

• Demonstrated effectiveness across 

weather conditions  

• Practical deployment completed  

• Significant advancement in solar 

forecasting 



>> Future Work 

• Expand dataset to multiple geographical 

locations  

• Integrate satellite imagery for enhanced 

coverage  

• Extend prediction horizon to medium-term  

• Implement ensemble methods  

• Edge deployment optimization  

• Integration with smart grid systems 
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