

Mask Wearing Detection Based on Faster R-CNN

Department of Computing Science, Chengdu University of Technology, Oxford Brookes University

Student: Lucy 202018010103 Supervisor: Happy Nkanta Monday

Contents

- 1. Introduction
- 2. Aim
- 3. Background Review
- 4. Datasets
- 5. Model Architecture
- 6. Experiment
- 7. Results
- 8. Conclusion

COVID-19

- Novel coronavirus pneumonia outbreak (COVID-19) in Wuhan, December 2019.
- Caused by SARS-CoV-2 virus.
- Transmission through person-to-person contact and contaminated surfaces.

Measures

- Vaccination
- Wearing a mask (is most efficient)
-

Development of an efficient mask detection system using Faster-RCNN algorithm with ResNet-50 and FPN backbone network to detect the wearing of masks in public places and promote public health.

Audience:

- Public Health Departments and Government Agencies
- Hospitals and Health Facilities
- Transportation Sector
- General Public

Q BACKGROUND REVIEW

Researcher	Method	Results	Disadvantage
Qin et al. [1]	SRC-Net: Super Resolution (SR) network with MobileNetV2	Accuracy 98.70%	Small dataset, few features, slow detection speed
Xu et al. [2]	SSD-based algorithm combined with channel attention mechanism	Accuracy 90.2%, recall 86.5%, F1 score 88.2%	/
Amit et al. [3]	Two-stage detector: RetinaFace detection with NASNetMobile classifier	Accuracy 98.28%, recall 100%, F1 score 99.13%	High complexity, low video frame rate
Madhura et al. [4]	Facemasknet	Accuracy 98.6%	Small dataset, contains only 35 images, may have regional bias
Loey et al. [5]	YOLOv2 + ResNet-50	Average accuracy 81%	ADAM optimizer outperforms SGDM Unable to recognize occluded faces in videos

What is Faster-RCNN and Why i choose it

- R-CNN and Fast R-CNN use selective search to generate region suggestions.
- Faster R-CNN introduces RPN to embed region suggestions into the network.
- Faster R-CNN combines RPN and Fast R-CNN through a shared feature layer.
- RPN is efficient, making Faster R-CNN an order of magnitude faster than Fast R-CNN.

Overview

- A dataset containing three categories (mask, no mask, false mask) was constructed, totaling 3954 images.
- The images were mainly derived from the Masked Face-Net dataset [6].
- The dataset is diverse, covering different races, ages, genders, and lighting conditions.

- Pascal VOC format was used
- Labeled image data using labelImg
- mask contains 1856 samples, no mask contains
 1204 samples, false mask contains 1653 samples.

- Flipped the image horizontally with a probability of 50%.
- Randomize the color properties of an image

MODEL ARCHITECTURE

In this project, FPN and ResNet50 are used as the backbone network of Faster R-CNN.

MODEL ARCHITECTURE

Table 2. Basic information about experimental software and hardware □			
Experimental environment		Configuration instructions ⊲	
e ⁱ	CPU↩	12th Gen Intel(R) Core (TM) i9-12900H (20 CPUs), ~2.5GHz←	
Hardware	GPU₽	NVIDIA GeForce RTX 3060₽	
	Memory	32768MB RAM←	
έı	Operating system [∠]	Windows 11, 64 bits	
Software	Programming environment⊲	Python 3.8.8; Pytorch 1.13.0; TensorFlow 2.13.0; NumPy 1.24.3₽	

Hyperparameter⊲	Freeze Training Phase⊲	Unfreeze Training Phase⊲
learn⊲	0.005↩	0.005↩
batch size←	8←3	8←
epoch	5←	20↩
optimizer⊲	SGD₽	SGD↩
weight decay ∂	0.0005←	0.0005↩
learning rate scheduler⊲	<i> </i> ←	StepLR, Step Size=3, Gamma=0.33↩

Initial Parameter Settings

MobileNetV2←

95.00%←

95.59%←

94.34%

96.48%

96.00%←

96.45%←

94.64%

98.40%←

ResNet50←

96.00%

96.81%←

95.31%↩

97.59%

	(396 files and 3 detected classes)	\neg
nomask -	153	130
mask -	95.1	97
falsemask -	48 154 False Posit	
	0 50 100 150 200 250 300 Number of objects per class	
•	PocNot50⊲	

MobileNetV2←

VGG16

Number of objects per class

Metrics↩

Recall

mAP←

Precision←

F1←

VGG16←

96.67%←

96.45%←

97.00%←

96.99%←

MobileNetV2←

VGG16₽

Metrics⊲	0.0001←	0.001←	0.005⊲
F1←	69.67%	92.33%↩	96.00%↩
Recall	78.13%↩	96.62%↩	96.45%←
Precision	63.53%↩	88.33%←	94.64%↩
mAP←	79.03%←	97.89%←	98.40%←

Metrics⊲	SGD←	ASGD←
F1 ←	96.00%←	88.67←
Recall←	96.45%←ੋ	94.37
Precision	94.64%←	83.67↩
mAP←	98.40%←	96.01%←

TP and FP

Hyperparameter⊲	Freeze Training Phase □	Unfreeze Training Phase⊲
Backbone	ResNet50+FPN	ResNet50+FPN
Learning Rate ⊲	0.005↩	0.005←
Batch Size 	8←	
Epoch	5↩	20←
Optimizer⊲	SGD↩	SGD↩
Weight Decay 	0.0005↩	0.0005↩
_earning Rate Scheduler⊲	/←□	StepLR, Step Size=3←
		Gamma=0.33
	▲	

Final Parameters Setting

Limitation

- ➤ Model training is resource intensive.
- > The dataset categories are not balanced.
- Mis-wearing mask images are mostly PS processed.

Future Work

- ➤ Utilizing GANs to generate diverse training data
- Collect more mask images from real scenes
- > Introduce attention mechanism

- [1] B. Qin and D. Li, 'Identifying Facemask-Wearing Condition Using Image Super-Resolution with Classification Network to Prevent COVID-19', Sensors, vol. 20, no. 18, p. 5236, Sep. 2020, doi: 10.3390/s20185236.
- [2] M. Xu, H. Wang, S. Yang, and R. Li, 'Mask wearing detection method based on SSD-Mask algorithm', in 2020 International Conference on Computer Science and Management Technology (ICCSMT), Shanghai, China: IEEE, Nov. 2020, pp. 138–143. doi: 10.1109/ICCSMT51754.2020.00034.
- [3] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, 'RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild', in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, Jun. 2020, pp. 5202–5211. doi: 10.1109/CVPR42600.2020.00525.
- [4] M. Inamdar and N. Mehendale, 'Real-Time Face Mask Identification Using Facemasknet Deep Learning Network', SSRN Journal, 2020, doi: 10.2139/ssrn.3663305.
- [5] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, 'Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection', Sustainable Cities and Society, vol. 65, p. 102600, Feb. 2021, doi: 10.1016/j.scs.2020.102600.
- [6] MaskedFace-Net, March. 2024, [online] Available: https://github.com/cabani/MaskedFace-Net.