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*Global Population Growth:
* Rapid increase In population necessitates a
sustainable and adequate food supply.
Challenges:
 Limited agricultural land and pure water
resources.
» Agricultural anomalies and plant diseases
Impacting crop yield and quality.
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Improve the accuracy and interpretability of plant disease

classification using deep learning.

« Employ residual learning and wavelet analysis
techniques.

 Develop a comprehensive deep learning model
iIntegrating separable CNN, residual learning

 Enhance feature extraction and representation for

accurate plant disease classification.
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The dataset Includes approximately 87000
RGB photos, which are divided Iinto 38
different categories. These categories
iInclude healthy and sick crop leaves.

Strawberry _h

ealthy

Division of the data set:
80% for training and 20% for testing.
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38 categories

Each category has 2000 images

A total of 76000 images
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Architecture
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10epoch

accuracy
0.1279
0.2749
0.3684
0.4009
0.4326
0.4502
0.4675
0.4810
0.4954
0.5017

20epoch

accuracy
0.4817
0.5674
0.6152
0.6494
0.6660
0.6836
0.6887
0.7139
0.7236
0.7280

40epoch

accuracy
0.6421
0.7202
0.7595
0.7756
0.7908
0.7988
0.8047
0.8208
0.8223
0.8230
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Concatenation

1%3
Convolutions

3x1
Convolutions

Previous Layer

3x3 1=3 3x1 1x1
Convolutions Conunwaj'olutmns Convolutions
1=1 1=1 Pool 1=
Convolutions Convolutions Conyolutions

Input (3 channels)

v

Convolution
Input Channels: 3, Output Channels: 64
Kernel Size: 7x7, Stride: 2, Padding: 3

Batch Normalization Relu
é x X x é ‘

-
MaxPooling (3x3)
Padding: 1,
QOutput Size: (height/4, width/4)
\

v

v

[

Separable block 1
Input channel: 64, output channel: 256
Number of blocks: 3
SeparableConv2d
Input channel: 64, output channel: 64
Kernel size: 1x1, stride: 1, padding: 0

~

Batch Normalization Relu

SeparableConv2d
Input Channels: 64, Output Channels: 64
Kernel Size: 3x3, Stride: 1, Padding: 1

Batch Normalization Relu

h 4

SeparableConv2d
Input channel: 64, output channel: 256
Kernel size: 1x1, stride: 1, padding: 0

Qutput

Average Pooling
Output Size: (1, 1), Channels: 512

r s

SeparableConv2d
Input Channels: 128, Output Channels: 512
Kernel Size: 1x1, Stride: 1, Padding: 0

[
Batch Normalization Relu

SeparableConv2d
Kernels: 128, Output Channels: 128
Kernel Size: 3x3, Stride: 1, Padding: 1

[
Batch Normalization Relu

|
|
|
]

SeparableBlock 2
Input Channels: 256, Output Channels: 512
Number of Blocks: 4

SeparableConv2d
Input Channels: 256
Output Channels: 128
Kernel Size: 1x1, Stride: 2, Padding: 0
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Software

Framework PyTorch
Language Python
Libraries Numpy, Scikit learn, Pandas, OpenCV, Scipy

Version management plan

Git repository

Hardware

Central processing unit(CPU)

AMD Ryzen 7 5800H CPU 3.20GHz GHz

Graphic Processing Unit(GPU)

NVIDIA GeForce RTX 3060
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Optimizer Learning Rate  Accuracy
0.01 37.10%
Adam 0.001 64.89%
0.0001 83.33%
0.01 53.59%
SGD 0.001 75.22%
0.0001 79.47%
0.01 61.93%
RMSprop 0.001 73.48%
0.0001 80.19%

After training 200 epochs with different optimizers and learning rates, the
accuracy of the test set are shown in the table above. It can be seen that the
highest accuracy iIs achieved when the optimizer is Adam and the learning rate
IS 0.0001.
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Training Loss Over Epochs Validation Loss Over Epochs
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The proposed model demonstrates high accuracy and precision, outperforming established architectures
like Inception-V3, MobileNet-V2, and ResNet-50-v2. Visualizations such as graphs and charts depict its

superior performance across various metrics, affirming its efficacy in tackling the specified task.
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M| Classification = [ X
| B | Classification of inse...  — O X
Select picture run | ThiS GU I program

Implements a simple
Image classification
Interface, where users
can select images for
classification and view
classification results
and probabilities.

result Apple  Apple_scab
pro 0. 9356324
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Given the variations in the backgrounds and lighting conditions of the plant disease photos, as
well as the limited availability of equipment resources, the model's performance cannot be
optimized. In order to enhance the performance and reliability of the model, we will explore the
Implementation of background removal techniques and the allocation of bigger video memory In

the future.

Thank you for your listening!



